An applet explores the following problem: A long day hiking through the Grand Canyon has discombobulated this tourist. Unsure of which way he is randomly stumbling, 1/3 of his steps are towards the edge of the cliff, while 2/3 of his steps are towards safety. From where he stands, one step forward will send him tumbling down. What is the probability that he can escape unharmed?
This applet is designed to approximate the value of Pi. It accomplishes this purpose by firing random data points at a circle inscribed within a square. The probability of a data point landing within the circle is a ratio of the circle's area to the area of the square.
Whatever you can see on your screen, SnagIt will easily capture for your immediate use. Once you've taken your capture, SnagIt lets you edit, enhance, save, and use the capture for numerous tasks.
This activity is an advanced version of the "Keep your eyes on the ball" activity by Bereska, et al. (1999). Students should gain experience with differentiating between independent and dependent variables, using linear regression to describe the relationship between these variables, and drawing inference about the parameters of the population regression line. Each group of students collects data on the rebound heights of a ball dropped multiple times from each of several different heights. By plotting the data, students quickly recognize the linear relationship. After obtaining the least squares estimate of the population regression line, students can set confidence intervals or test hypotheses on the parameters. Predictions of rebound length can be made for new values of the drop height as well. Data from different groups can be used to test for equality of the intercepts and slopes. By focusing on a particular drop height and multiple types of balls, one can also introduce the concept of analysis of variance. Key words: Linear regression, independent variable, dependent variables, analysis of variance
A TI graphing calculator emulator. Emulates the TI-82, TI-83, TI-83 Plus, TI-85, TI-86, TI-89, TI-92, TI-92 II, and TI-92 Plus. Features a graphical debugger, grayscale, send/receive, black-link, parallel link and more. User must transfer calculator's ROM to the computer through TI-Graph Link.
This group activity illustrates the concepts of size and power of a test through simulation. Students simulate binomial data by repeatedly rolling a ten-sided die, and they use their simulated data to estimate the size of a binomial test. They carry out further simulations to estimate the power of the test. After pooling their data with that of other groups, they construct a power curve. A theoretical power curve is also constructed, and the students discuss why there are differences between the expected and estimated curves. Key words: Power, size, hypothesis testing, binomial distribution
A mathematical word processor that includes an easy-to-use computer algebra system (MuPad). Products include Scientific Wokplace, Scientific Word, Scientific Notebook, and MuPad Pro. Student version are available.