Simulation

  • A cartoon to instigate discussions on the use of random numbers in both designing and analyzing data.The cartoon was used in the October 2018 CAUSE cartoon caption contest and the winning caption was written by Anthony Bonifonte from Denison University. The cartoon was drawn by British cartoonist John Landers (www.landers.co.uk) based on an idea by Dennis Pearl from Penn State University.

    0
    No votes yet
  • Online Statistics: An Interactive Multimedia Course of Study is a resource for learning and teaching introductory statistics. It contains material presented in textbook format and as video presentations. This resource features interactive demonstrations and simulations, case studies, and an analysis lab. 

    0
    No votes yet
  • A collection of Java applets and simulations covering a range of topics (descriptive statistics, confidence intervals, regression, effect size, ANOVA, etc.).

    0
    No votes yet
  • RStudio Cloud makes it easy for professionals, hobbyists, trainers, teachers and students to do, share, teach and learn data science using R.  Create analyses using RStudio directly from your browser - there is no software to install and nothing to configure on your computer.  Share your projects - and access those of others - without worrying about data transfer or package installation. Each project defines its own environment, and RStudio Cloud automatically reproduces that environment whenever anyone accesses the project.  It’s easy to share analyses with the world - but it’s also simple to collaborate with a select group in a private space. You control who can enter a space - and via roles, you have fine grained control over what each user can do.  There are also many learning materials available: interactive tutorials covering the basics of data science, cheatsheets for working with popular R packages, links to Datacamp courses, and a guide to using RStudio Cloud.

    0
    No votes yet
  • These cheat sheets make it easy to learn about and use some of the favorite packages of RStudio. 

    0
    No votes yet
  • RStudio is a set of integrated tools designed to help you be more productive with R. It includes a console, syntax-highlighting editor that supports direct code execution, and a variety of robust tools for plotting, viewing history, debugging and managing your workspace. 

    0
    No votes yet
  • R is a language and environment for statistical computing and graphics. It is a GNU project which is similar to the S language and environment which was developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. R can be considered as a different implementation of S. There are some important differences, but much code written for S runs unaltered under R.

    R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, …) and graphical techniques, and is highly extensible. The S language is often the vehicle of choice for research in statistical methodology, and R provides an Open Source route to participation in that activity.

    0
    No votes yet
  • This page supports an in-class exercise that highlights several key Bayesian concepts. The scenario is as follows: a large paper bag contains pieces of candy with wrappings of different color, and we are interested in learning about the unknown proportion of yellow-wrapped pieces of candy. After completing the exercises, we will be familiar with the following concepts and ideas: probability distributions can quantify degree of beliefprior distributionposterior distributionsequential updatingconjugacy, Cromwell’s Rule (http://en.wikipedia.org/wiki/Cromwell's_rule), the data overwhelm the prior, Bayes factors, Savage-Dickey density ratio, sensitivity analysiscoherence.

    0
    No votes yet
  • This is a web application framework for R, in which you can write and publish web apps without knowing HTML, Java, etc. You create two .R files: one that controls the user interface, and one that controls what the app does. The site contains examples of Shiny apps, a tutorial on how to get started, and information on how to have your apps hosted, if you don't have a server.

    0
    No votes yet
  • These slides from the 2014 ICOTS workshop describe a minimal set of R commands for Introductory Statistics. Also, it describes the best way to teach them to students. There are 61 slides that start with plotting, move through modeling, and finish with randomization.
    0
    No votes yet

Pages