Other

  • This article describes an interactive activity illustrating sampling distributions for means, properties of confidence intervals, properties of hypothesis testing, confidence intervals for means, and hypothesis tests for means. Students generate and analyze data and through simulation explore these concepts. The activity is completed in three parts. The three parts of the activity can be used in sequence or they can be used individually as "stand alone" activities. This allows the educator flexibility in utilizing the activity. Part I illustrates the sampling distribution of the sample mean. Part II illustrates confidence intervals for the population mean. Part III illustrates hypothesis tests for the population mean. This activity is appropriate for use in an introductory college or high school AP statistics course. Key words: sampling distribution of a sample mean, confidence interval for a mean, hypothesis test on a mean, simulation, random rectangles
    0
    No votes yet
  • This activity provides students with 24 histograms representing distributions with differing shapes and characteristics. By sorting the histograms into piles that seem to go together, and by describing those piles, students develop awareness of the different versions of particular shapes (e.g., different types of skewed distributions, or different types of normal distributions), that not all histograms are easy to classify, that there is a difference between models (normal, uniform) and characteristics (skewness, symmetry, etc.). Key words: Histogram, shape, normal, uniform, skewed, symmetric, bimodal
    0
    No votes yet
  • This applet allows a person to add up to 50 points onto its green viewing screen. After each point is added by clicking on the screen with the mouse, a red line will appear. This red line represents a line passing through (Average x, Average y) with a slope that can be altered by clicking the Left or Right buttons. The slope of this line may also be changed by dragging the mouse either right or left. By clicking on Show Best Fit, a blue best fit line will be calculated by the computer.

    0
    No votes yet
  • This article describes an interactive activity illustrating general properties of hypothesis testing and hypothesis tests for proportions. Students generate, collect, and analyze data. Through simulation, students explore hypothesis testing concepts. Concepts illustrated are: interpretation of p-values, type I error rate, type II error rate, power, and the relationship between type I and type II error rates and power. This activity is appropriate for use in an introductory college or high school statistics course. Key words: hypothesis test on a proportion, type I and II errors, power, p-values, simulation
    0
    No votes yet
  • Students explore the definition and interpretations of the probability of an event by investigating the long run proportion of times a sum of 8 is obtained when two balanced dice are rolled repeatedly. Making use of hand calculations, computer simulations, and descriptive techniques, students encounter the laws of large numbers in a familiar setting. By working through the exercises, students will gain a deeper understanding of the qualitative and quantitative relationships between theoretical probability and long run relative frequency. Particularly, students investigate the proximity of the relative frequency of an event to its probability and conclude, from data, the order on which the dispersion of the relative frequency diminishes. Key words: probability, law of large numbers, simulation, estimation

    Includes project file for Minitab and coding for a dice rolling simulation.

    0
    No votes yet
  • This activity leads students to appreciate the usefulness of simulations for approximating probabilities. It also provides them with experience calculating probabilities based on geometric arguments and using the bivariate normal distribution. We have used it in courses in probability and mathematical statistics, as well as in an introductory statistics course at the post-calculus level. Students are expected to approximate the solution through simulation before solving it exactly. They are also expected to employ graphical as well as algebraic problem-solving strategies, in addition to their simulation analyses. Finally, students are asked to explain intuitively why it makes sense for the probabilities to change as they do. Key words: simulation, probability, geometry, independence, bivariate normal distribution
    0
    No votes yet
  • Explore the functionality of your scientific calculator.

    0
    No votes yet
  • An important objective in hiring is to ensure diversity in the workforce. The race or gender of individuals hired by an organization should reflect the race or gender of the applicant pool. If certain groups are under-represented or over-represented among the employees, then there may be a case for discrimination in hiring. On the other hand, there may be a number of random factors unrelated to discrimination, such as the timing of the interview or competition from other employers, that might cause one group to be over-represented or under-represented. In this exercise, we ask students to investigate the role of randomness in hiring, and to consider how this might be used to help substantiate or refute charges of discrimination. Key words: Probability distribution, binomial distribution, computer simulation, decision rules
    0
    No votes yet
  • Residual plots and other diagnostics are important to deciding whether or not linear regression is appropriate for a set of data. Many students might believe that if the correlation coefficient is strong enough, these diagnostic checks are not important. The data set included in this activity was created to lure students into a situation that looks on the surface to be appropriate for the use of linear regression but is instead based (loosely) on a quadratic function. Key words: regression, residuals
    0
    No votes yet
  • The program DistCalc calculates probabilities and critical values for the most important distributions. The purpose of this program is to show the concept of critical values and the replacement of printed distribution tables. The Distribution Calculator offers calculations for the normal distribution, the t distribution, the chi-square distribution, and the F distribution.

    0
    No votes yet

Pages