Resource Library

Advanced Search | Displaying 511 - 520 of 1435
  • Compared to probability calculators, the traditional format of distribution tables has the advantage of showing many values simultaneously and, thus, enables the user to examine and quickly explore ranges of probabilities. This webpage includes a list of distributions and tables, including the standard normal (Z) table, student's t table, chi-square table, and F distribution tables. An animation of the density function and distribution function is shown above each distribution table to demonstrate the effects changing degrees of freedom and significance levels have on the shape of a distribution.

    0
    No votes yet
  • This software makes it easier to use the R language. It includes a code debugger, editing, and visualization tools.

    0
    No votes yet
  • Rseek.org is a search engine for R resources. Type any topic in the search box, and get resources that are R specific. You can further narrow your search to just articles, books, packages, support, or "for beginners."

    0
    No votes yet
  • Calculate the number of respondents needed in a survey using our free sample size calculator. Our calculator shows you the amount of respondents you need to get statistically significant results for a specific population. Discover how many people you need to send a survey invitation to obtain your required sample. You can also calculate the margin of error based on your sample size.

    0
    No votes yet
  • This is an online calculator that can be used to determine the recommended sample size that is needed for a specific margin of error, confidence level, and population size.

    0
    No votes yet
  • March 24, 2009 Activity webinar presented by Nicholas Horton, Smith College, and hosted by Leigh Slauson, Otterbein College. Students have a hard time making the connection between variance and risk. To convey the connection, Foster and Stine (Being Warren Buffett: A Classroom Simulation of Risk and Wealth when Investing in the Stock Market; The American Statistician, 2006, 60:53-60) developed a classroom simulation. In the simulation, groups of students roll three colored dice that determine the success of three "investments". The simulated investments behave quite differently. The value of one remains almost constant, another drifts slowly upward, and the third climbs to extremes or plummets. As the simulation proceeds, some groups have great success with this last investment--they become the "Warren Buffetts" of the class. For most groups, however, this last investment leads to ruin because of variance in its returns. The marked difference in outcomes shows students how hard it is to separate luck from skill. The simulation also demonstrates how portfolios, weighted combinations of investments, reduce the variance. In the simulation, a mixture of two poor investments is surprisingly good. In this webinar, the activity is demonstrated along with a discussion of goals, context, background materials, class handouts, and references (extra materials available for download free of charge)

    0
    No votes yet
  • When performing a hypothesis test about the population mean, a possible reason for the failure of rejection of the null hypothesis is that there's an insufficient sample size to achieve a powerful test. Using a small data set, Minitab is used to check for normality of the data, to perform a 1-Sample t test, and to compute Power and Sample Size for 1-Sample t.

    0
    No votes yet
  • Big data analysis is explained in this online course that introduces the user to the tools Hadoop and Mapreduce. These tools allow for the parallel computing necessary to analyze large amounts of data.

    0
    No votes yet
  • A joke for discussing how transformations can make data more normal and stabilize variances across groups with different means (here the square root transformation for Poisson data). The joke was written in 2016 by Larry Lesser from The University of Texas at El Paso.

    0
    No votes yet
  • A joke to be used in teaching about the use of randomization in experiments or about the Pearson correlation coefficient. The idea for the joke came from Lawrence Mark Lesser of The University of Texas at El Paso in 2012.

    0
    No votes yet

Pages