This page will compute the t-test for either correlated or independent samples. One may copy and paste data in or type the data in individually.
This page will compute the t-test for either correlated or independent samples. One may copy and paste data in or type the data in individually.
As the page opens, you will be prompted to enter two sample size values, na and nb. If the samples are of different sizes, the larger of the two should be designated as sample A. If you are starting out with raw (unranked) data, the necessary rank- ordering will be performed automatically.
These pages will perform an analysis of covariance for k independent samples, where the individual samples, A, B, etc., represent k quantitative or categorical levels of the independent variable; DV = the dependent variable of interest; and CV = the concomitant variable whose effects one wishes to bring under statistical control. The pages in this first batch require the direct entry of data, item by item, and as they open you will be prompted to enter the size of the largest of your several samples. The pages in this second batch allow for the import of data from a spreadsheet via copy and paste procedures.
These pages will perform a factorial analysis of covariance for RxC independent samples, cross-tabulated according to two independent variables, A and B, where A is the row variable and B the column variable; DV = the dependent variable of interest; and CV = the concomitant variable whose effects one wishes to bring under statistical control. As the pages open, you will be prompted to enter the size of the largest of your several samples.
Beginning with a set of n paired values of Xa and Xb, this page will perform the necessary rank- ordering along with all other steps appropriate to the Wilcoxon test. As the page opens, you will be prompted to enter the number of paired values of Xa and Xb.
Generate a graphic and numerical display of the properties of the Normal Distribution. For a unit normal distribution, with M=0 and SD=α1, enter 0 and 1 at the prompt. For a distribution with M=100 and SD=α15, enter 100 and 15. And so forth
This applet shades the graph and computes the probability of X, when X is between two parameters x1 and x2. The user inputs the mean, standard deviation, x1 and x2. This applet should be resized for optimal viewing.
This applet allows the user to simulate a race where the results are based on the roll of a die. The user can determine which player moves forward for a given roll, and can then experiment with the race by determining which player will win more often based on the rules that they specify.