Statistical Inference & Techniques

  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: 2x2 contingency tables, fixing columns and rows, MLE, and previous topics within the context of contingency tables (variance, confidence intervals, standard error approximation, likelihood ratio, etc.).  

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: absolute/relative measures, number needed to treat (NNT), relative risk, odds ratio, the delta method (with a multivariate extension), and a variance covariance matrix. 

    0
    No votes yet
  • This presentation discusses modeling cluster correlation explicitly through random effects, yielding a generalized linear mixed effects models (GLMM). Part II contains many examples of application to different studies.

    0
    No votes yet
  • This presentation discusses modeling cluster correlation explicitly through random effects, yielding a generalized linear mixed effects models (GLMM). 

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: multinomial distribution, LaGrange multipliers, Exact Multinomial Test (EMT), the Pearson statistic, and goodness of fit.

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following:  Wald test, score test, likelihood-ratio test, large sample confidence intervals, and the F distribution.

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data.  This lecture provides a review of probability and statistical concepts such as conditional probabilities, Bayes Theorem, sensitivity and specificity, and binomial and poisson distributions.

    0
    No votes yet
  • Includes detailed PowerPoints for 20 lectures for topics including generalized linear models, logistic regression, and random effects models.

    0
    No votes yet
  • This is a graduate level introduction to statistics including topics such as probabilty/sampling distributions, confidence intervals, hypothesis testing, ANOVA, and regression.  Perfect for students and teachers wanting to learn/acquire materials for this topic.

    5
    Average: 5 (1 vote)
  • This course covers methodology, major software tools and applications in data mining. By introducing principal ideas in statistical learning, the course will help students to understand conceptual underpinnings of methods in data mining. It focuses more on usage of existing software packages (mainly in R) than developing the algorithms by the students. The topics include statistical learning; resampling methods; linear regression; variable selection; regression shrinkage; dimension reduction; non-linear methods; logistic regression, discriminant analysis; nearest-neighbors; decision trees; bagging; boosting; support vector machines; principal components analysis; clustering. Perfect for students and teachers wanting to learn/acquire materials for this topic.

    0
    No votes yet

Pages

register