Statistical Inference & Techniques

  • The Neutral Buoyancy Laboratory allows astronauts an atmosphere resembling zero gravity (weightlessness) in order to train for missions involving spacewalks. In this activity, students will evaluate pressures experienced by astronauts and scuba divers who assist them while training in the NBL.  This lesson addresses correlation, regression, residuals, inerpreting graphs, and making predictions.

    NASA's Math and Science @ Work project provides challenging supplemental problems for students in advanced science, technology, engineering and mathematics, or STEM classes including Physics, Calculus, Biology, Chemistry and Statistics, along with problems for advanced courses in U.S. History and Human Geography.

    0
    No votes yet
  • Math and Science @ Work presents an activity for high school AP Statistics students. In this activity, students will look at data from an uncalibrated radar and a calibrated radar and determine how statistically significant the error is between the two different data sets.

    NASA's Math and Science @ Work project provides challenging supplemental problems for students in advanced science, technology, engineering and mathematics, or STEM classes including Physics, Calculus, Biology, Chemistry and Statistics, along with problems for advanced courses in U.S. History and Human Geography.

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data.  This lecture overs the following: covariance patterns and generalized estimating equations (GEE). 

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data.  This lecture overs the following: conditional logistic regression, conditional likelihood for matched pairs, the non-central hypergeometric, the conditional maximum likelihood estimator (CMLE), conditional confidence interval for odds ratios, and McNemar's statistic.

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data.  This lecture overs the following:  odds ratio, dependent proportion, marginal homogeneity, McNemar's Test, marginal homogeneity for greater than 2 levels, measures of agreement, and the kappa coefficient (weighted vs. unweighted).

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: sparse tables, sampling zeros, structural zeros, and log-linear model (and limitations).

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: partial/conditional tables, confounding, types of independence (mutual, joint, marginal, and conditional), identifiability constraints, partial odds ratios, hierarchical log-linear model, pairwise interaction log-linear model, conditional independence log-linear model, goodness of fit, and model building.

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: conditional independence, log-linear models for 2x2 tables, expected counts, logistic regression, odds ratio, parameters of interest for different designs and the MLEs, poisson log-linear model, double dichotomy, the multinomial, and the multinomial log-linear model.

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: ordinal regression models, cumulative probabilities, non-proportional odds, score stat for proportionl odds, MLEs, the adjacent categories logit, and proportional odds model.

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: generalized odds ratio, collapsed categories, polytomous (or multinomial) logistic regression, and maximum likelihood using the multinomial.  

    0
    No votes yet

Pages