A cartoon to be used for discussing the selection of the best explanatory variable in a regression model. The cartoon was used in the March 2017 CAUSE Cartoon Caption Contest. The winning caption was submitted by Michele Balik-Meisner, a student at North Carolina State University. The drawing was created by British cartoonist John Landers based on an idea from Dennis Pearl of Penn State University. A second winning entry, by Michael Posner of Villanova University, may be found at www.causeweb.org/cause/resources/fun/cartoons/variable-wheel-ii Three honorable mentions that rose to the top of the judging in the March competition included "No no no! You randomize AFTER you select your research topic!" by Mickey Dunlap from University of Georgia; "This isn't what I meant by random variable!" by Larry Lesser from The University of Texas at El Paso; and "We find this method of finding 'significant' predictors to be quicker than using stepwise regression and it is even slightly more reproducible." by Greg Snow from Brigham Young University.
A cartoon to be used for discussing the selection of the best explanatory variable in a regression model. The cartoon was used in the March 2017 CAUSE Cartoon Caption Contest. The winning caption was submitted by Michael Posner, from Villanova University. The drawing was created by British cartoonist John Landers based on an idea from Dennis Pearl of Penn State University. A second winning entry, by Michele Balik-Meisner, a student at North Carolina State University, may be found at www.causeweb.org/cause/resources/fun/cartoons/variable-wheel-i Three honorable mentions that rose to the top of the judging in the March competition included "No no no! You randomize AFTER you select your research topic!" by Mickey Dunlap from University of Georgia; "This isn't what I meant by random variable!" by Larry Lesser from The University of Texas at El Paso; and "We find this method of finding 'significant' predictors to be quicker than using stepwise regression and it is even slightly more reproducible." by Greg Snow from Brigham Young University.
A song about the work of British nursing pioneer and statistician Florence Nightingale (1820 - 1910) that may be used in discussing the idea that important statistical methods generally arise from important real problems. The lyrics were written in 2017 by Lawrence Mark Lesser from The University of Texas at El Paso and may be sung to the tune of Julie Gold's Grammy-winning song "From a Distance." The song was published in the May 2017 online issue of Amstat News (see http://magazine.amstat.org/blog/2017/05/18/florence-astatistics-song/) and, with accompanying historical and educational links, in the summer 2017 newsletter of the Teaching Statistics in the Health Sciences section of the American Statistical Association.