Resource Library

Advanced Search | Displaying 841 - 850 of 1429
  • This text article gives a relatively short description of the concept of p-values and statistical significance. This article aimed at health professionals frames the idea of statistical significance in the setting of a weight loss program. In addition to discussing p-values and comparing them with confidence intervals, the article touches on the ideas of practical significance and the fact that the significance of 0.05 is arbitrary.
    0
    No votes yet
  • This applet generates confidence intervals for means or proportions. The options for confidence intervals for means include "z with sigma," "z with s," or "t." The options for confidence intervals for proportions are "Wald," "Adjusted Wald," or "Score." Users set the population parameters, sample size, number of intervals, and confidence level. Click "Sample," and the applet will graph the intervals. Intervals shown in green contain the true population mean or proportion, while intervals in red do not. The true mean or proportion is shown by a blue line. The applet displays the proportion of intervals containing the population parameter for each sample and a running total of all the samples. Users can also click on a particular interval to display the numerical interval or sort the displayed confidence intervals from smallest to largest. This applet is part of a collection designed to accompany the textbook "Investigating Statistical Concepts, Applications, and Methods" (ISCAM) and is used in Exploration 4.3 on page 327, Investigation 4.3.6 on page 331, and Exploration 4.4 on page 350. This applet also supplements "Workshop Statistics: Discovery with Data," 2nd edition, Activity 19-5 on page 403. Additional materials written for use with these applets can be found at http://www.mathspace.com/NSF_ProbStat/Teaching_Materials/rowell/final/16_cireview_bc322_2.doc and http://www.mathspace.com/NSF_ProbStat/Teaching_Materials/rowell/final/15_sampdistreview_bc322_1.doc.
    0
    No votes yet
  • This dataset contains information on temperature, precipitation, and weather stations for 48 states. The data is available in Excel and rich text formats.
    0
    No votes yet
  • This site presents several photographs from real life that demonstrate natural statistical concepts. Each picture shows a statistical distribution made by some pattern occuring in everyday life. An explanation of each picture tells what distribution is being represented and how.
    0
    No votes yet
  • This activity stresses the importance of writing clear, unbiased survey questions. It explore the types of bias present in surveys and ways to reduce these biases. In addition, the activity covers some basics of surveys: population, sample, sampling frame, and sampling method.
    0
    No votes yet
  • This activity provides practice for constructing confidence intervals and performing hypothesis tests. In addition, it stresses interpretation of confidence intervals and comparison and application of results in context.
    0
    No votes yet
  • This activity will allow students to learn the difference between observational studies and experiments, with emphasis on the importance of cause-and-effect relationships. The activity will also familiarize students with key terms such as factors, treatments, retrospective and prospective studies, etc.
    0
    No votes yet
  • This activity will allow students to familiarize themselves with technology and its use in calculating marginal, conditional, and joint distributions, as well as making conclusions from these tabular and graphical displays. The corresponding data set 'Pizza Data' is located at the following web address: http://www.causeweb.org/repository/ACT/PIZZA.TXT
    0
    No votes yet
  • The t-distribution activity is a student-based in-class activity to illustrate the conceptual reason for the t-distribution. Students use TI-83/84 calculators to conduct a simulation of random samples. The students calculate standard scores with both the population standard deviation and the sample standard deviation. The resulting values are pooled over the entire class to give the simulation a reasonable number of iterations. This document provides the instructor with learning objectives, context, mechanics, follow-up, and evidence from use associated with the in-class activity.
    0
    No votes yet
  • This activity represents a very general demonstration of the effects of the Central Limit Theorem (CLT). The activity is based on the SOCR Sampling Distribution CLT Experiment. This experiment builds upon a RVLS CLT applet (http://www.ruf.rice.edu/~lane/stat_sim/sampling_dist/) by extending the applet functionality and providing the capability of sampling from any SOCR Distribution. Goals of this activity: provide intuitive notion of sampling from any process with a well-defined distribution; motivate and facilitate learning of the central limit theorem; empirically validate that sample-averages of random observations (most processes) follow approximately normal distribution; empirically demonstrate that the sample-average is special and other sample statistics (e.g., median, variance, range, etc.) generally do not have distributions that are normal; illustrate that the expectation of the sample-average equals the population mean (and the sample-average is typically a good measure of centrality for a population/process); show that the variation of the sample average rapidly decreases as the sample size increases.
    0
    No votes yet

Pages

register