Resource Library

Advanced Search | Displaying 371 - 380 of 1435
  • This applet simulates rolling dice and displays the outcomes in a histogram. Students can choose to roll 1, 2, 6, or 9 dice either 1, 10, 20, or 100 times. The outcome studied is the sum of the dice and a red line is drawn on the histogram to show expected number of occurences of each outcome.

    0
    No votes yet
  • The Food and Drug Administration requires pharmaceutical companies to establish a shelf life for all new drug products through a stability analysis. This is done to ensure the quality of the drug taken by an individual is within established levels. The purpose of this out-of-class project or in-class example is to determine the shelf life of a new drug. This is done through using simple linear regression models and correctly interpreting confidence and prediction intervals. An Excel spreadsheet and SAS program are given to help perform the analysis. Key words: prediction interval, confidence interval, stability

    0
    No votes yet
  • This group activity focuses on conducting an experiment to determine which of two brands of paper towels are more absorbent by measuring the amount of water absorbed. A two-sample t-test can be used to analyze the data, or simple graphics and descriptive statistics can be used as an exploratory analysis. Students are asked to think about design issues, and to write a short report stating their results and conclusions, along with an evaluation of the experimental design. Key words: Two-sample t-test

    0
    No votes yet
  • This group activity illustrates the concepts of size and power of a test through simulation. Students simulate binomial data by repeatedly rolling a ten-sided die, and they use their simulated data to estimate the size of a binomial test. They carry out further simulations to estimate the power of the test. After pooling their data with that of other groups, they construct a power curve. A theoretical power curve is also constructed, and the students discuss why there are differences between the expected and estimated curves. Key words: Power, size, hypothesis testing, binomial distribution

    0
    No votes yet
  • This activity is an advanced version of the "Keep your eyes on the ball" activity by Bereska, et al. (1999). Students should gain experience with differentiating between independent and dependent variables, using linear regression to describe the relationship between these variables, and drawing inference about the parameters of the population regression line. Each group of students collects data on the rebound heights of a ball dropped multiple times from each of several different heights. By plotting the data, students quickly recognize the linear relationship. After obtaining the least squares estimate of the population regression line, students can set confidence intervals or test hypotheses on the parameters. Predictions of rebound length can be made for new values of the drop height as well. Data from different groups can be used to test for equality of the intercepts and slopes. By focusing on a particular drop height and multiple types of balls, one can also introduce the concept of analysis of variance. Key words: Linear regression, independent variable, dependent variables, analysis of variance

    0
    No votes yet
  • This handout lists the most commonly used effect sizes, adjustments, and rules of thumb concerning sample size calculation. 

    0
    No votes yet
  • Students explore the definition and interpretations of the probability of an event by investigating the long run proportion of times a sum of 8 is obtained when two balanced dice are rolled repeatedly. Making use of hand calculations, computer simulations, and descriptive techniques, students encounter the laws of large numbers in a familiar setting. By working through the exercises, students will gain a deeper understanding of the qualitative and quantitative relationships between theoretical probability and long run relative frequency. Particularly, students investigate the proximity of the relative frequency of an event to its probability and conclude, from data, the order on which the dispersion of the relative frequency diminishes. Key words: probability, law of large numbers, simulation, estimation

    Includes project file for Minitab and coding for a dice rolling simulation.

    0
    No votes yet
  • Poses the following problem: Suppose there was one of six prizes inside your favorite box of cereal. Perhaps it's a pen, a plastic movie character, or a picture card. How many boxes of cereal would you expect to have to buy, to get all six prizes?

    0
    No votes yet
  • R is a language and environment for statistical computing and graphics. It is a GNU project which is similar to the S language and environment which was developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. R can be considered as a different implementation of S. There are some important differences, but much code written for S runs unaltered under R.

    R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, …) and graphical techniques, and is highly extensible. The S language is often the vehicle of choice for research in statistical methodology, and R provides an Open Source route to participation in that activity.

    0
    No votes yet
  • G*Power is a tool to compute statistical power analyses for many different t tests, F tests, χ2 tests, ztests and some exact tests. G*Power can also be used to compute effect sizes and to display graphically the results of power analyses.

    5
    Average: 5 (1 vote)

Pages

register