Resource Library

Advanced Search | Displaying 151 - 160 of 1431
  • As the page opens, you will be prompted to enter the sizes of your several samples. If you are starting out with raw (unranked) data, the necessary rank- ordering will be performed automatically.

    0
    No votes yet
  • In the Latin Square computational pages on this site, the third IV, with levels designated as A, B, C, etc., is listed as the "treatment" variable. The analysis of variance within an orthogonal Latin Square results in three F-ratios: one for the row variable, one for the column variable, and one for the third IV whose j levels are distributed orthogonally among the cells of the rows x columns matrix.

    0
    No votes yet
  • In the Latin Square computational pages on this site, the third IV, with levels designated as A, B, C, etc., is listed as the "treatment" variable. The analysis of variance within an orthogonal Latin Square results in three F-ratios: one for the row variable, one for the column variable, and one for the third IV whose j levels are distributed orthogonally among the cells of the rows x columns matrix.

    0
    No votes yet
  • This page has two calculators. One will cacluate a simple logistic regression, while the other calculates the predicted probability and odds ratio. There is also a brief tutorial covering logistic regression using an example involving infant gestational age and breast feeding. Please note, however, that the logistic regression accomplished by this page is based on a simple, plain-vanilla empirical regression.

    0
    No votes yet
  • This page will calculate the intercorrelations (r and r2) for up to five variables, designated as A, B, C, D, and E.

    0
    No votes yet
  • This page will calculate the intercorrelations (r) for any number of variables (V1, V2, V3, etc.) and for any number of observations per variable.

    0
    No votes yet
  • Given a sample of N values of X randomly drawn from a normally distributed population, this page will calculate the .95 and .99 confidence intervals (CI) for the estimated mean of the population.

    0
    No votes yet
  • In this free online video program, "students will understand inference for simple linear regression, emphasizing slope, and prediction. This unit presents the two most important kinds of inference: inference about the slope of the population line and prediction of the response for a given x. Although the formulas are more complicated, the ideas are similar to t procedures for the mean sigma of a population."

    0
    No votes yet
  • In this free online video program, "students will discover how to convert the standard normal and use the standard deviation; how to use a table of areas to compute relative frequencies; how to find any percentile; and how a computer creates a normal quartile plot to determine whether a distribution is normal. Vehicle emissions standards and medical studies of cholesterol provide real-life examples."

    0
    No votes yet
  • The Student Dust Counter is an instrument aboard the NASA New Horizons mission to Pluto, launched in 2006. As it travels to Pluto and beyond, SDC will provide information on the dust that strikes the spacecraft during its 14-year journey across the solar system. These observations will advance human understanding of the origin and evolution of our own solar system, as well as help scientists study planet formation in dust disks around other stars. 

    In this lesson, students learn the concepts of averages, standard deviation from the mean, and error analysis. Students explore the concept of standard deviation from the mean before using the Student Dust Counter data to determine the issues associated with taking data, including error and noise. Questions are deliberately open-ended to encourage exploration.

    0
    No votes yet

Pages

register