Out-of-class

  • Calculates unweighted kappa and kappa with linear and quadratic weightings, along with some other measures of concordance.

    0
    No votes yet
  • This page will compute the Two-Way Factorial ANOVA for Independent Samples, for up to four rows by four columns. This page will also calculate the critical values of Tukey's HSD for purposes of post-ANOVA comparisons.

    0
    No votes yet
  • In the first simulation, random samples of size n are drawn from the population one sample at a time. With df=3, the critical value of chi-square for significance at or beyond the 0.05 level is 7.815; hence, any calculated value of chi-square equal to or greater than 7.815 is recorded as "significant," while any value smaller than that is noted as "non-significant." The second simulation does the same thing, except that it draws random samples 100 at a time. The Power of the Chi-Square "Goodness of Fit" Test pertains to the questionable common practice of accepting the null hypothesis upon failing to find a significant result in a one- dimensional chi-square test.

    0
    No votes yet
  • These lecture notes are composed of nearly 180 PowerPoint slides that have been coverted to a pdf file (6 per page) on Biomedical Imaging. The following topics are outlined: Vocabulary, Displaying Data, Central Tendency and Variability, Normal Z-scores, Standardized Distribution, Probability, Samples & Sampling Error, Type I and Type II Errors, Power of a Test, Hypothesis Testing, One Sample Tests, Two Independent Sample Tests, Two Dependent Sample Tests & Estimation, Correlation and Regression Techniques, Non-Parametric Statistical Tests, Applications of Central Limit Theorem, Law of Large Numbers, Design of Studies and Experiments, Fisher's F-Test, Analysis Of Variance(ANOVA), Principle Component Analysis (PCA), Chi-Square Goodness-of-fit test, Multiple Linear Regression, General Linear Model, Bootstrapping and Resampling.
    0
    No votes yet
  • This resource defines what a p-value is, why .05 is significant, and when to use it. It also covers related topics such as one-tailed/two-tailed tests and hypothesis testing.
    0
    No votes yet
  • This resource defines a pie chart. It also allows the user to input values to create their own graphs. The user has control over the title, up to 15 slices, the color of each slice, and can choose a 3-D option.

    0
    No votes yet
  • The applet in this section allows for simple data analysis of univariate data. Users can either generate normal or uniform data for k samples or copy and paste data from another source to a text box. A univariate analysis is performed for all k samples. A two-sample t-test (Pooled and Satterthwaite) is performed for k = 2. An ANOVA test is performed for k > 2. This page was formerly located at http://www.stat.vt.edu/~sundar/java/applets/Data.html
    0
    No votes yet
  • In this activity, students work in groups to provide practical interpretations of graphs, considering shape, center, and spread. Each group posts their interpretation for one graph and critiques other groups' interpretations on other graphs. Students examine key aspects (shape, spread, location, etc) of histograms and stem plots to develop the ability to interpret graphics. This activity gets the students up and out of their seats and working together. It is a good activity for early in a term. The Gallery Walk idea can be adapted for different sized classes but this activity has been designed for classes up to 65 students.
    0
    No votes yet
  • The applets in this section of Statistical Java address Power. Users can perform one or two tailed tests for proportions or means for one or two samples. Set the parameters and drag the mouse across the graph to see how effect size affects power. An article and an alternative source for this applet can be found at http://www.amstat.org/publications/jse/v11n3/java/power/ This page was formerly located at http://www.stat.vt.edu/~sundar/java/applets/Power.html
    0
    No votes yet
  • The applets in this section of Statistical Java allow you to see how levels of confidence are achieved through repeated sampling. The confidence intervals are related to the probability of successes in a Binomial experiment. The main page gives the equation for finding confidence intervals and describes the parameters (p, n, alpha). Each applet allows you to change a different parameter and simulate sampling to demonstrate the long run proportion of intervals that contain the true probability of success. The applets are available from a pull-down menu at the bottom of the page. This page was formerly located at http://www.stat.vt.edu/~sundar/java/applets/CI.html
    0
    No votes yet

Pages

register