Laboratories

  • The JCCKit is a small library and flexible framework for creating scientific charts and plots works on java platform. 

    0
    No votes yet
  • This page contains information about the mass, mean temperature, length of day, rotation period, etc. for the planets of our solar system.
    0
    No votes yet
  • In these activities designed to introduce sampling distributions and the Central Limit Theorem, students generate several small samples and note patterns in the distributions of the means and proportions that they themselves calculate from these samples. Outside of class, students generate samples of dice rolls and coin spins and draw random samples from small populations for which data is given on each individual. Students report their sample means and proportions to the instructor who then compiles the results into a single data file for in-class exploration of sampling distributions and the Central Limit Theorem. Key words: Sampling distribution, sample mean, sample proportion, central limit theorem

    0
    No votes yet
  • This article describes an activity that illustrates contingency table (two-way table) analysis. Students use contingency tables to analyze the "unusual episode" (the sinking of the ocean liner Titanic)data (from Dawson 1995) and attempt to use their analysis to deduce the origin of the data. The activity is appropriate for use in an introductory college statistics course or in a high school AP statistics course. Key words: contingency table (two-way table), conditional distribution

    0
    No votes yet
  • This article describes an interactive activity illustrating sampling distributions for means, properties of confidence intervals, properties of hypothesis testing, confidence intervals for means, and hypothesis tests for means. Students generate and analyze data and through simulation explore these concepts. The activity is completed in three parts. The three parts of the activity can be used in sequence or they can be used individually as "stand alone" activities. This allows the educator flexibility in utilizing the activity. Part I illustrates the sampling distribution of the sample mean. Part II illustrates confidence intervals for the population mean. Part III illustrates hypothesis tests for the population mean. This activity is appropriate for use in an introductory college or high school AP statistics course. Key words: sampling distribution of a sample mean, confidence interval for a mean, hypothesis test on a mean, simulation, random rectangles
    0
    No votes yet
  • This activity provides students with 24 histograms representing distributions with differing shapes and characteristics. By sorting the histograms into piles that seem to go together, and by describing those piles, students develop awareness of the different versions of particular shapes (e.g., different types of skewed distributions, or different types of normal distributions), that not all histograms are easy to classify, that there is a difference between models (normal, uniform) and characteristics (skewness, symmetry, etc.). Key words: Histogram, shape, normal, uniform, skewed, symmetric, bimodal
    0
    No votes yet
  • This article describes an interactive activity illustrating general properties of hypothesis testing and hypothesis tests for proportions. Students generate, collect, and analyze data. Through simulation, students explore hypothesis testing concepts. Concepts illustrated are: interpretation of p-values, type I error rate, type II error rate, power, and the relationship between type I and type II error rates and power. This activity is appropriate for use in an introductory college or high school statistics course. Key words: hypothesis test on a proportion, type I and II errors, power, p-values, simulation
    0
    No votes yet
  • Gives some background on the Buffon needle problem. Has a link to an applet that allows one to simulate dropping a needle1, 10, 100, or 1000 times. One also has control over the length of the needle.

    0
    No votes yet
  • Poses the following problem: Suppose there was one of six prizes inside your favorite box of cereal. Perhaps it's a pen, a plastic movie character, or a picture card. How many boxes of cereal would you expect to have to buy, to get all six prizes?

    0
    No votes yet
  • Students explore the definition and interpretations of the probability of an event by investigating the long run proportion of times a sum of 8 is obtained when two balanced dice are rolled repeatedly. Making use of hand calculations, computer simulations, and descriptive techniques, students encounter the laws of large numbers in a familiar setting. By working through the exercises, students will gain a deeper understanding of the qualitative and quantitative relationships between theoretical probability and long run relative frequency. Particularly, students investigate the proximity of the relative frequency of an event to its probability and conclude, from data, the order on which the dispersion of the relative frequency diminishes. Key words: probability, law of large numbers, simulation, estimation

    Includes project file for Minitab and coding for a dice rolling simulation.

    0
    No votes yet

Pages

register