Research

  • Evaluated the effectiveness of interactive computer demonstrations in teaching about statistical sampling distributions. 39 undergraduates used a Monte Carlo simulation of either standard errors (SEMDEMO) or F-distributions (FDEMO) and were subsequently tested on both concepts. In Study 1, only lower ability students using FDEMO showed improved attainment related to their specific experience. SEMDEMO was then simplified, following student feedback. Study 2, with 65 undergraduates, showed higher specific attainment related to interactive experience with both SEMDEMO and FDEMO, particularly in lower ability students. Reasons for improved performance may include increased practice and deeper processing of concepts. (PsycLIT Database Copyright 1992 American Psychological Assn, all rights reserved)

  • This paper describes an interactive Web-based tutorial that supplements instruction on statistical power. This freely available tutorial provides several interactive exercises that guide students as they draw multiple samples from various populations and compare results for populations with differing parameters (for example, small standard deviation versus large standard deviation). The tutorial assignment includes diagnostic multiple-choice questions with feedback addressing misconceptions, and follow-up questions suitable for grading. The sampling exercises utilize an interactive Java applet that graphically demonstrates relationships between statistical power and effect size, null and alternative populations and sampling distributions, and Type I and II error rates. The applet allows students to manipulate the mean and standard deviation of populations, sample sizes, and Type I error rate. Students (n = 84) enrolled in introductory and intermediate statistics courses overwhelmingly rated the tutorial as clear, useful, easy to use, and they reported increased comfort with the topic of statistical power after using the tutorial. Students who used the tutorial outperformed those who did not use the tutorial on a final exam question measuring knowledge of the factors influencing statistical power.

  • Conceptual understanding of statistics is usually considered one of several aspects of statistical knowledge. It refers to the ability of students to tie their knowledge of statistical ideas and concepts into a network of interrelated propositions. In this study an attempt was made to analyze the theory of descriptive regression analysis into its constituent propositions. Content analysis of the work of nine students revealed that these propositions were used by the students as cognitive units in their mental representation of the statistical theory. Suggestions for a use of constituent propositions as learning tools are discussed.

  • Researchers and educators have found that statistical ideas are often misunderstood by students and professionals. In order to develop better statistical reasoning, students need to first construct a deeper understanding of fundamental concepts. The Sampling Distributions program and ancillary instructional materials were developed to guide student exploration and discovery. The program allows students to specify and change the shape of a population, choose different sample sizes, and simulate sampling distributions by randomly drawing large numbers of samples. The program provides graphical, visual feedback that allows students to construct their own understanding of sampling distribution behavior. To capture changes in students' conceptual understanding we developed diagnostic, graphics-based test items that were administered before and after students used the program. An activity that asked students to test their predictions and confront their misconceptions was found to be more effective than one based on guided discovery. Our findings demonstrate that while software can provide the means for a rich classroom experience, computer simulations alone do not guarantee conceptual change.

  • Over the past twenty years much has been written about the introductory or service course in statistics. Historically, this course has been viewed as difficult and unpleasant by many students and frustrating and unrewarding to teach by many instructors. Dissatisfactions with the introductory course have led people to suggest new models for the course, to lead workshops to reexamine this course (Hogg 1992), and to offer recommendations for how the course should be changed (Cobb 1992). This paper presents the results of a survey of teachers of the first statistics course, to determine the impact of reform efforts on the teaching of statistics. Suggestions and guidelines for teaching these courses are offered, based on the results of the survey.

  • This study examined the relative effects of cooperative vs. lecture methods of instruction. Two sections of an undergraduate statistics course were studied. Test scores were dependent variables. Students in one section were randomly assigned to cooperative groups. Students in both sections completed assignments and practice problems -- in the cooperative class in groups during class, and in the lecture class individually, outside of class. Students in the cooperative learning class achieved higher test scores. Implications of the study and resulting questions are discussed.

  • This article reports on the results of two studies that investigated the effectiveness of different uses of expert systems in large introductory statistics classes. Three groups of students were compared -- those who used an expert system created by the instructor of the course, those who created their own expert system, and those who did not use any at all. The first experiment showed non-significant, but interesting, trends that were explored in the second experiment. In the second experiment, significant differences emerged as the semester evolved in favor of those who used the expert system, regardless of whether or not the students created it themselves. These differences disappeared on the final exam, when technological problems added to the end-of-the-semester tension. These findings support the notion that the use of expert systems in the classroom can have an important impact on the level and amount of learning that occurs. This article describes these two studies in detail and draws some implications for teaching.

  • Using data from the 1997 Digest of Education Statistics, this teaching case addresses the relationship between public school expenditures and academic performance, as measured by the SAT. While an initial scatterplot shows that SAT performance is lower, on average, in high-spending states than in low-spending states, this statistical relationship is misleading because of an omitted variable. Once the percentage of students taking the exam is controlled for, the relationship between spending and performance reverses to become both positive and statistically significant. This exercise is ideally suited for classroom discussion in an elementary statistics or research methods course, giving students an opportunity to test common assumptions made in the news media regarding equity in public school expenditures.

  • The purpose of the study was to develop a valid and reliable test instrument to identify students who hold misconceptions about probability. A total of 263 students completed a multiple-choice test that used a two-part format rather than the typical one-part format. Results of the study showed that even students with formal instruction in statistics continue to demonstrate misconceptions. The test instrument developed in this study provides instructors with (1) a valid and reliable method of identifying students who hold common misconceptions about probability, and (2) diagnostic information concerning students' errors not frequently available through other formats. The test instrument was further evaluated in an instructional intervention study.

  • This paper presents a survey of the reported research about students' errors, difficulties and conceptions concerning elementary statistical concepts. Information related to the learning processes is essential to curricular design in this branch of mathematics. In particular, the identification of errors and difficulties which students display is needed in order to organize statistical training programmes and to prepare didactical situations which allow the students to overcome their cognitive obstacles. This paper does not attempt to report on probability concepts, an area which has received much attention, but concentrates on other statistical concepts, which have received little attention hitherto. (orig.)

Pages