Java Applet

  • This activity illustrates the convergence of long run relative frequency to the true probability. The psychic ability of a student from the class is studied using an applet. The student is asked to repeatedly guess the outcome of a virtual coin toss. The instructor enters the student's guesses and the applet plots the percentage of correct answers versus the number of attempts. With the applet, many guesses can be entered very quickly. If the student is truly a psychic, the percentage correct will converge to a value above 0.5.
    0
    No votes yet
  • November 24, 2009 Activity webinar presented by Carl Lee, Central Michigan University, and hosted by Leigh Slauson, Capital University. This webinar introduces a real-time online hands-on activity database for teaching introductory statistics. One particular activity, "How well can hand size predict height?", is used to engage students with a real-time activity in order to learn bivariate relationships. Various other activities can be found at stat.cst.cmich.edu/statact. The real-time database approach speeds up the process of data gathering and shifts the focus in order to engage students in the process of data production and statistical investigation.
    0
    No votes yet
  • This site funded by the Kaiser Family Foundation provides information on health care and demographics for the 50 U.S. states. Users can use interactive maps or search by particular characteristics for each state. Tables can be created and copied and there is also direct data download (in Excel format) from this site. The site includes data on median income, gender, ethnicity, medical and drug spending, HIV/AIDS rates, and over 500 other variables at the state level
    0
    No votes yet
  • This activity represents a very general demonstration of the effects of the Central Limit Theorem (CLT). The activity is based on the SOCR Sampling Distribution CLT Experiment. This experiment builds upon a RVLS CLT applet (http://www.ruf.rice.edu/~lane/stat_sim/sampling_dist/) by extending the applet functionality and providing the capability of sampling from any SOCR Distribution. Goals of this activity: provide intuitive notion of sampling from any process with a well-defined distribution; motivate and facilitate learning of the central limit theorem; empirically validate that sample-averages of random observations (most processes) follow approximately normal distribution; empirically demonstrate that the sample-average is special and other sample statistics (e.g., median, variance, range, etc.) generally do not have distributions that are normal; illustrate that the expectation of the sample-average equals the population mean (and the sample-average is typically a good measure of centrality for a population/process); show that the variation of the sample average rapidly decreases as the sample size increases.
    0
    No votes yet
  • Funded by the National Science Foundation, workshops were held over a three-year period, each with about twenty participants nearly equally divided between mathematics educators and statisticians. In these exchanges the mathematics educators presented honest assessments of the status of mathematics education research (both its strengths and its weaknesses), and the statisticians provided insights into modern statistical methods that could be more widely used in such research. The discussions led to an outline of guidelines for evaluating and reporting mathematics education research, which were molded into the current report. The purpose of the reporting guidelines is to foster the development of a stronger foundation of research in mathematics education, one that will be scientific, cumulative, interconnected, and intertwined with teaching practice. The guidelines are built around a model involving five key components of a high-quality research program: generating ideas, framing those ideas in a research setting, examining the research questions in small studies, generalizing the results in larger and more refined studies, and extending the results over time and location. Any single research project may have only one or two of these components, but such projects should link to others so that a viable research program that will be interconnected and cumulative can be identified and used to effect improvements in both teaching practice and future research. The guidelines provide details that are essential for these linkages to occur. Three appendices provide background material dealing with (a) a model for research in mathematics education in light of a medical model for clinical trials; (b) technical issues of measurement, unit of randomization, experiments vs. observations, and gain scores as they relate to scientifically based research; and (c) critical areas for cooperation between statistics and mathematics education research, including qualitative vs. quantitative research, educating graduate students and keeping mathematics education faculty current in education research, statistics practices and methodologies, and building partnerships and collaboratives.

    0
    No votes yet
  • This dataset contains information on temperature, precipitation, and weather stations for 48 states. The data is available in Excel and rich text formats.
    0
    No votes yet
  • This applet generates confidence intervals for means or proportions. The options for confidence intervals for means include "z with sigma," "z with s," or "t." The options for confidence intervals for proportions are "Wald," "Adjusted Wald," or "Score." Users set the population parameters, sample size, number of intervals, and confidence level. Click "Sample," and the applet will graph the intervals. Intervals shown in green contain the true population mean or proportion, while intervals in red do not. The true mean or proportion is shown by a blue line. The applet displays the proportion of intervals containing the population parameter for each sample and a running total of all the samples. Users can also click on a particular interval to display the numerical interval or sort the displayed confidence intervals from smallest to largest. This applet is part of a collection designed to accompany the textbook "Investigating Statistical Concepts, Applications, and Methods" (ISCAM) and is used in Exploration 4.3 on page 327, Investigation 4.3.6 on page 331, and Exploration 4.4 on page 350. This applet also supplements "Workshop Statistics: Discovery with Data," 2nd edition, Activity 19-5 on page 403. Additional materials written for use with these applets can be found at http://www.mathspace.com/NSF_ProbStat/Teaching_Materials/rowell/final/16_cireview_bc322_2.doc and http://www.mathspace.com/NSF_ProbStat/Teaching_Materials/rowell/final/15_sampdistreview_bc322_1.doc.
    0
    No votes yet
  • This text article gives a relatively short description of the concept of p-values and statistical significance. This article aimed at health professionals frames the idea of statistical significance in the setting of a weight loss program. In addition to discussing p-values and comparing them with confidence intervals, the article touches on the ideas of practical significance and the fact that the significance of 0.05 is arbitrary.
    0
    No votes yet
  • The Numbers Guy examines numbers in the news, business and politics. Some numbers are flat-out wrong or biased, while others are valid and help us make informed decisions. Carl Bialik tells the stories behind the stats, in daily updates on this blog and in his column published every other Friday in The Wall Street Journal.
    0
    No votes yet
  • This lecture example discusses calculating chance with probabilities (a ratio of occurrence to the whole) or odds (a ratio of occurrence to nonoccurrence). It presents a clinical example of measuring the chance of initiating breastfeeding among 1000 new mothers. Tables are provided in pdf format.
    0
    No votes yet

Pages

register