Ellen Gundlach, Purdue University
Wednesday, August 19, 2015 - 12:00pm ET
In this presentation, we will compare three delivery methods of an introductory statistical literacy course, all taught by the same instructor in the same semester for over 400 students. The complications of defining specific delivery methods and the pros and cons of choices of assessments will also be discussed.
Emily Casleton and Ulrike Genschel, Iowa State University
Tuesday, April 21, 2015 - 1:00pm ET
In this webinar, we will present lecture material and activities that introduce metrology, the science of measurement, which were developed and tested in a pilot study at Iowa State University. Our motivation for the newly developed material stems from the observation that many undergraduate students who have just completed an introductory statistics course still lack a deeper understanding of variability and enthusiasm for the field of statistics. The materials explain how to characterize sources of variability in a dataset, in a way that is natural and accessible, because the sources of variability are observable. Everyday examples of measurements, such as the amount of gasoline pumped into a car, are presented, and the consequences of variability within those measurements are discussed. A corresponding article in the November issue of Journal of Statistics Education shows most students who were exposed to the material improved their understanding of variability and had a greater appreciation of the value of statistics.
Lawrence M. Lesser and Amy E. Wagler, The University of Texas at El Paso
Wednesday, March 18, 2015 - 12:30pm ET
We motivate and illustrate a lesser-known dynamic physical model for the median, offer pedagogical discussion and support, and share results of a pilot assessment with pre-service middle school teachers.
Before the webinar, we invite you to browse our article "http://www.amstat.org/publications/jse/v22n3/lesser.pdf" , or at least watch the 1-minute video http://www.amstat.org/publications/jse/v22n3/pulley_loop_physical_model_of_median.html of the model in action.
Kendra K. Schmid and Erin Blankenship, University of Nebraska
Tuesday, February 17, 2015 - 2:00pm ET
This presentation discusses the creation and delivery of an introductory statistics course as part of a master’s degree program for in-service mathematics teachers. We give an overview of the master’s degree program and discuss aspects of the course, including the goals for the course, course planning and development, the instructional team, the evolution of the course over multiple iterations. In addition, we present lessons learned through five offerings including what we have learned about its value to the middle-level teachers who have participated.
Shaun S. Wulff, University of Wyoming
Tuesday, November 18, 2014 - 3:00pm ET
Students need exposure to Bayesian thinking at early stages in their mathematics and statistics education. While many students in upper level probability courses can generally recite the differences in the Frequentist and Bayesian inferential paradigms, these students often struggle using Bayesian methods when conducting data analysis. Specifically, students tend to struggle translating subjective belief to the specification of a prior distribution and the incorporation of uncertainty in the Bayesian inferential approach. The purpose of this webinar is to present a hands-on activity involving the Beta-Binomial model to facilitate an intuitive understanding of the Bayesian approach through subjective problem formulation which lies at the heart of Bayesian statistics.
Stanley A. Taylor & Amy E. Mickel; California State University, Sacramento
Saturday, October 18, 2014 - 3:00pm ET
We present a data set and case study exercise that can be used by educators to teach a range of statistical concepts including Simpson’s paradox. The data set and case study are based on a real-life scenario where there was a claim of discrimination based on ethnicity. The exercise highlights the importance of performing rigorous statistical analysis and how data interpretations can accurately inform or misguide decision makers.
Eiki Satake, Emerson College
Saturday, October 18, 2014 - 3:00pm ET
Eiki's presentation begins at the 28 minute mark. See Part 1.
Jennifer Kaplan, The University of Georgia
Tuesday, September 16, 2014 - 12:00pm ET
Histograms are adept at revealing the distribution of data values, especially the shape of the distribution and any outlier values. They are included in introductory statistics texts, research methods texts, and in the popular press, yet students often have difficulty interpreting the information conveyed by a histogram. This talk will identify and discusses four misconceptions prevalent in student understanding of histograms. In addition, pre- and post-test results on an instrument designed to measure the extent to which the misconceptions persist after instruction will be presented. The results indicate not only that some of the misconceptions are commonly held by students prior to instruction, but also that they persist after instruction. Future directions for teaching and research are considered.
Caroline Brophy, National University of Ireland Maynooth
Tuesday, June 17, 2014 - 12:00pm ET
Active learning opportunities can be difficult to generate when teaching large groups of students. In this webinar, I will present an experiment using Sudoku puzzles that can be easily conducted in a lecture with 300 (or more) students. The factor manipulated in the experiment is the type of Sudoku puzzle and there are four types, which are each the same puzzle but with different characters. The experiment yields a rich data set which can be used to illustrate basic statistical methods such as chi-square test for independence of categorical variables, through to more complicated analyses such as survival analysis techniques. I will outline the experiment and give an overview of the teaching opportunities that the data present.
Amy G. Froelich, Iowa State University
Tuesday, April 15, 2014 - 12:00pm ET
As a part of an opening course survey, data on eye color and gender were collected from students enrolled in an introductory statistics course at a large university over a recent four year period. Biologically, eye color and gender are independent traits. However, in the data collected from our students, there is a statistically significant dependence between the two variables. In this article, we present two ideas for using this data set in the classroom, and explore the potential reasons for the dependence between the two variables in the population of our students.