Probability

  • Everything existing in the universe is the fruit of chance and necessity. is a quote by ancient Greek philosopher Democritus (460 B.C.E. - 360 B.C.E.).

    0
    No votes yet
  • A cartoon to teach ideas of elementary probability. Cartoon by John Landers (www.landers.co.uk) based on an idea from Dennis Pearl (The Ohio State University) in 2008. Free to use in the classroom and on course web sites.

    5
    Average: 5 (1 vote)
  • A cartoon to teach ideas of conditional probability. Cartoon by John Landers (www.landers.co.uk) based on an idea from Dennis Pearl (The Ohio State University) in 2008. Free to use in the classroom and on course web sites.

    4
    Average: 4 (1 vote)
  • A cartoon to teach ideas of probability ad the Law of Large Numbers. Cartoon by John Landers (www.landers.co.uk) based on an idea from Dennis Pearl (The Ohio State University). Free to use in the classroom and on course web sites.

    4
    Average: 4 (1 vote)
  • This activity is an example of Cooperative Learning in Statistics. It uses student's own data to introduce bivariate relationship using hand size to predict height. Students enter their data through a real-time online database. Data from different classes are stored and accumulated in the database. This real-time database approach speeds up the data gathering process and shifts the data entry and cleansing from instructor to engaging students in the process of data production. Key words: Regression, correlation data collection, body measurements
    0
    No votes yet
  • This activity makes use of a campus-based resource to develop a "capstone" project for a survey sampling course. Students work in small groups and use a complex sampling design to estimate the number of new books in the university library given a budget for data collection. They will conduct a pilot study using some of their budget, receive feedback from the instructor, then complete data collection and write a final report.
    0
    No votes yet
  • This activity uses student's own data to introduce bivariate relationship using hand size to predict height. Students enter their data through a real-time online database. Data from different classes are stored and accumulated in the database. This real-time database approach speeds up the data gathering process and shifts the data entry and cleansing from instructor to engaging students in the process of data production.

    0
    No votes yet
  • This activity allows students to explore the relationship between sample size and the variability of the sampling distribution of the mean. Students use a Java applet to specify the shape of the "parent" distribution and two sample sizes. The simulation then samples from the parent distribution to approximate the sampling distributions for the two sample sizes. Students can see both sampling distributions at the same time making them easy to compare. The activity also allows students to determine the probability of extreme sample means for the different sample sizes so that they can discover that small sample sizes are much more likely than large samples to produce extreme values. Keywords: sampling distribution, sample size, simulation
    0
    No votes yet
  • This activity illustrates the convergence of long run relative frequency to the true probability. The psychic ability of a student from the class is studied using an applet. The student is asked to repeatedly guess the outcome of a virtual coin toss. The instructor enters the student's guesses and the applet plots the percentage of correct answers versus the number of attempts. With the applet, many guesses can be entered very quickly. If the student is truly a psychic, the percentage correct will converge to a value above 0.5.
    0
    No votes yet
  • This hands-on activity is appropriate for a lab or discussion section for an introductory statistics class, with 8 to 40 students. Each student performs a binomial experiment and computes a confidence interval for the true binomial probability. Teams of four students combine their results into one confidence interval, then the entire class combines results into one confidence interval. Results are displayed graphically on an overhead transparency, much like confidence intervals would be displayed in a meta-analysis. Results are discussed and generalized to larger issues about estimating binomial proportions/probabilities.
    0
    No votes yet

Pages