A joke about the meaning of an inequality symbol like ≤ written in February 2020 by Larry Lesser from The University of Texas at El Paso and Dennis Pearl from Penn State University.
A joke about the meaning of an inequality symbol like ≤ written in February 2020 by Larry Lesser from The University of Texas at El Paso and Dennis Pearl from Penn State University.
A cartoon suitable for use in teaching about Bayes Theorem (an obvious follow-up exercise is to ask what “P(C)” would have to be to make the “Modified Bayes Theorem” correct). The cartoon is number 2059 (October, 2018) from the webcomic series at xkcd.com created by Randall Munroe. Free to use in the classroom and on course web sites under a creative commons attribution-non-commercial 2.5 license.
Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA’s objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. This PRA Procedures Guide, in the present second edition, is neither a textbook nor an exhaustive sourcebook of PRA methods and techniques. It provides a set of recommended procedures, based on the experience of the authors, that are applicable to different levels and types of PRA that are performed for aerospace applications.
This presentation was given by Aneta Siemiginowska at the 4th International X-ray Astronomy School (2005), held at the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA.
Our online calculators and converters can help you in many daily tasks that require calculations to complete.
Free statistical calculators online. Our basic statistical calculators will help you in common tasks you might encounter and deal mostly with simple distributions.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: partial/conditional tables, confounding, types of independence (mutual, joint, marginal, and conditional), identifiability constraints, partial odds ratios, hierarchical log-linear model, pairwise interaction log-linear model, conditional independence log-linear model, goodness of fit, and model building.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: conditional independence, log-linear models for 2x2 tables, expected counts, logistic regression, odds ratio, parameters of interest for different designs and the MLEs, poisson log-linear model, double dichotomy, the multinomial, and the multinomial log-linear model.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: Pearson's residuals and rules for partitioning an I x J contingency tables as ways to determine association between variables.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: linear association, correlation coefficient, ridits/modified ridits, nonparametric methods, Cochran-Armitage Trend test,