Resource Library

Statistical Topic

Advanced Search | Displaying 1401 - 1410 of 2220
  • This interactive lecture activity motivates the need for sampling. "Why sample, why not just take a census?" Under time pressure, students count the number of times the letter F appears in a paragraph. The activity demonstrates that a census, even when it is easy to take, may not give accurate information. Under the time pressure measurement errors are more frequently made in the census rather than in a small sample.
    0
    No votes yet
  • This activity allows students to explore the relationship between sample size and the variability of the sampling distribution of the mean. Students use a Java applet to specify the shape of the "parent" distribution and two sample sizes. The simulation then samples from the parent distribution to approximate the sampling distributions for the two sample sizes. Students can see both sampling distributions at the same time making them easy to compare. The activity also allows students to determine the probability of extreme sample means for the different sample sizes so that they can discover that small sample sizes are much more likely than large samples to produce extreme values. Keywords: sampling distribution, sample size, simulation
    0
    No votes yet
  • This group activity illustrates the concepts of size and power of a test through simulation. Students simulate binomial data by repeatedly rolling a ten-sided die, and they use their simulated data to estimate the size of a binomial test. They carry out further simulations to estimate the power of the test. After pooling their data with that of other groups, they construct a power curve. A theoretical power curve is also constructed, and the students discuss why there are differences between the expected and estimated curves. Key words: Power, size, hypothesis testing, binomial distribution
    0
    No votes yet
  • In this activity, students learn the true nature of the chi-square and F distributions in lecture notes (PowerPoint file) and an Excel simulation. This leads to a discussion of the properties of the two distributions. Once the sum of squares aspect is understood, it is only a short logical step to explain why a sample variance has a chi-square distribution and a ratio of two variances has an F-distribution. In a subsequent activity, instances of when the chi-square and F-distributions are related to the normal or t-distributions (e.g. Chi-square = z2, F = t2) will be illustrated. Finally, the activity will conclude with a brief overview of important applications of chi-square and F distributions, such as goodness-of-fit tests and analysis of variance.
    0
    No votes yet
  • In this activity, students explore calculations with simple rates and proportions, and basic time series data, in the context of news coverage of an important statistical study. From 1973 to 1995, a total of 4578 US death penalty cases went through the full course of appeals, with the result that 68% of the sentences were overturned! Reports of the study in various newspapers and magazines fueled public debate about capital punishment.
    0
    No votes yet
  • This activity makes use of a campus-based resource to develop a "capstone" project for a survey sampling course. Students work in small groups and use a complex sampling design to estimate the number of new books in the university library given a budget for data collection. They will conduct a pilot study using some of their budget, receive feedback from the instructor, then complete data collection and write a final report.
    0
    No votes yet
  • This activity is an example of Cooperative Learning in Statistics. It uses student's own data to introduce bivariate relationship using hand size to predict height. Students enter their data through a real-time online database. Data from different classes are stored and accumulated in the database. This real-time database approach speeds up the data gathering process and shifts the data entry and cleansing from instructor to engaging students in the process of data production. Key words: Regression, correlation data collection, body measurements
    0
    No votes yet
  • Because surveys are increasingly common in the medical literature, readers need to be able to critically evaluate the survey method. Two questions are fundamental: 1) Who do the respondents represent? 2) What do their answers mean? This lecture example discusses survey sampling terms and aspects of interpreting survey results.
    0
    No votes yet
  • This lecture example discusses how two continuous variables relate to one another with a clinical example of the relationship between body mass and fasting blood sugar. It offers three questions to help readers visualize and interpret correlation coefficients.
    0
    No votes yet
  • This lecture example reviews the concept of CIs and their relationship to P values. Tables are provided in pdf format.
    0
    No votes yet

Pages