Resource Library

Statistical Topic

Advanced Search | Displaying 731 - 740 of 2283
  • This activity is an advanced version of the "Keep your eyes on the ball" activity by Bereska, et al. (1999). Students should gain experience with differentiating between independent and dependent variables, using linear regression to describe the relationship between these variables, and drawing inference about the parameters of the population regression line. Each group of students collects data on the rebound heights of a ball dropped multiple times from each of several different heights. By plotting the data, students quickly recognize the linear relationship. After obtaining the least squares estimate of the population regression line, students can set confidence intervals or test hypotheses on the parameters. Predictions of rebound length can be made for new values of the drop height as well. Data from different groups can be used to test for equality of the intercepts and slopes. By focusing on a particular drop height and multiple types of balls, one can also introduce the concept of analysis of variance. Key words: Linear regression, independent variable, dependent variables, analysis of variance

    0
    No votes yet
  • Which is more robust against outliers: mean or median?  This app demonstrates the (in)stability of these descriptive statistics as the value of an outlier and the number of data points change.

    0
    No votes yet
  • The Caesar Shift is a translation of the alphabet; for example, a five-letter shift would code the letter a as f, b as g, ... z as e. We describe a five-step process for decoding an encrypted message. First, groups of size 4 construct a frequency table of the letters in two lines of a coded message. Second, students construct a bar chart for a reference message of the frequency of letters in the English language. Third, students create a bar chart of the coded message. Fourth, students visually compare the bar chart of the reference message (step 2) to the bar chart of the coded message (step 3). Based on this comparison, students hypothesize a shift. Fifth, students apply the shift to the coded message. After decoding the message, students are asked a series of questions that assess their ability to see patterns. The questions are geared for higher levels of cognitive reasoning. Key words: bar charts, Caesar Shift, encryption, testing hypotheses

    0
    No votes yet
  • Explore the functionality of your scientific calculator.

    0
    No votes yet
  • These cheat sheets make it easy to learn about and use some of the favorite packages of RStudio. 

    0
    No votes yet
  • This applet is designed to approximate the value of Pi. It accomplishes this purpose by firing random data points at a circle inscribed within a square. The probability of a data point landing within the circle is a ratio of the circle's area to the area of the square.

    0
    No votes yet
  • This handout lists the most commonly used effect sizes, adjustments, and rules of thumb concerning sample size calculation. 

    0
    No votes yet
  • An applet explores the following problem: A long day hiking through the Grand Canyon has discombobulated this tourist. Unsure of which way he is randomly stumbling, 1/3 of his steps are towards the edge of the cliff, while 2/3 of his steps are towards safety. From where he stands, one step forward will send him tumbling down. What is the probability that he can escape unharmed?

    0
    No votes yet
  • Students explore the definition and interpretations of the probability of an event by investigating the long run proportion of times a sum of 8 is obtained when two balanced dice are rolled repeatedly. Making use of hand calculations, computer simulations, and descriptive techniques, students encounter the laws of large numbers in a familiar setting. By working through the exercises, students will gain a deeper understanding of the qualitative and quantitative relationships between theoretical probability and long run relative frequency. Particularly, students investigate the proximity of the relative frequency of an event to its probability and conclude, from data, the order on which the dispersion of the relative frequency diminishes. Key words: probability, law of large numbers, simulation, estimation

    Includes project file for Minitab and coding for a dice rolling simulation.

    0
    No votes yet
  • Poses the following problem: Suppose there was one of six prizes inside your favorite box of cereal. Perhaps it's a pen, a plastic movie character, or a picture card. How many boxes of cereal would you expect to have to buy, to get all six prizes?

    0
    No votes yet

Pages