Resource Library

Statistical Topic

Advanced Search | Displaying 211 - 220 of 589
  • This activity makes use of a campus-based resource to develop a "capstone" project for a survey sampling course. Students work in small groups and use a complex sampling design to estimate the number of new books in the university library given a budget for data collection. They will conduct a pilot study using some of their budget, receive feedback from the instructor, then complete data collection and write a final report.
    0
    No votes yet
  • In this hands-on activity, students count the number of chips in cookies in order to carry out an independent samples t-test to see if Chips AhoyŒ¬ cookies have a higher, lower, or different mean number of chips per cookie than a supermarket brand. First there is a class discussion that can include concepts about random samples, independence of samples, recently covered tests, comparing two parameters with null and alternative hypotheses, what it means to be a chip in a cookie, how to break up the cookies to count chips, and of course a class consensus on the hypotheses to be tested. Second the students count the number of chips in a one cookie from each brand, and report their observations to the instructor. Third, the instructor develops the independent sample t-test statistic. Fourth, the students carry out (individually or as a class) the hypothesis test, checking the assumptions on sample-size/population-shape.
    0
    No votes yet
  • This activity will allow students to learn the difference between observational studies and experiments, with emphasis on the importance of cause-and-effect relationships. The activity will also familiarize students with key terms such as factors, treatments, retrospective and prospective studies, etc.
    0
    No votes yet
  • This activity provides practice for constructing confidence intervals and performing hypothesis tests. In addition, it stresses interpretation of confidence intervals and comparison and application of results in context.
    0
    No votes yet
  • This activity stresses the importance of writing clear, unbiased survey questions. It explore the types of bias present in surveys and ways to reduce these biases. In addition, the activity covers some basics of surveys: population, sample, sampling frame, and sampling method.
    0
    No votes yet
  • This site presents several photographs from real life that demonstrate natural statistical concepts. Each picture shows a statistical distribution made by some pattern occuring in everyday life. An explanation of each picture tells what distribution is being represented and how.
    0
    No votes yet
  • This is a large collection of statistics related jokes and humor compiled by Gary C. Ramseyer. The collection is indexed by statistical topic for ease of use.
    0
    No votes yet
  • A cartoon to teach about the measurement issues of bias, reliability, and validity. Cartoon by John Landers (www.landers.co.uk) based on an idea from Dennis Pearl (The Ohio State University). Free to use in the classroom and on course web sites.
    0
    No votes yet
  • Song is about formal constructions of probability theory. May be sung to the tune of "Strawberry Fields" by John Lennon and Paul McCartney. Musical accompaniment realization and vocals are by Joshua Lintz from University of Texas at El Paso.
    0
    No votes yet
  • This activity represents a very general demonstration of the effects of the Central Limit Theorem (CLT). The activity is based on the SOCR Sampling Distribution CLT Experiment. This experiment builds upon a RVLS CLT applet (http://www.ruf.rice.edu/~lane/stat_sim/sampling_dist/) by extending the applet functionality and providing the capability of sampling from any SOCR Distribution. Goals of this activity: provide intuitive notion of sampling from any process with a well-defined distribution; motivate and facilitate learning of the central limit theorem; empirically validate that sample-averages of random observations (most processes) follow approximately normal distribution; empirically demonstrate that the sample-average is special and other sample statistics (e.g., median, variance, range, etc.) generally do not have distributions that are normal; illustrate that the expectation of the sample-average equals the population mean (and the sample-average is typically a good measure of centrality for a population/process); show that the variation of the sample average rapidly decreases as the sample size increases.
    0
    No votes yet

Pages