Resource Library

Statistical Topic

Advanced Search | Displaying 261 - 270 of 662
  • In this video (which lasts a little over 21 minutes), Oxford mathematician Peter Donnelly reveals the common mistakes humans make in interpreting statistics -- and the devastating impact these errors can have on the outcome of criminal trials.
    0
    No votes yet
  • Certitude is not the test of certainty. We have been cock-sure of many things that were not so. is a quote of American Supreme Court Justice Oliver Wendell Holmes, Jr. (1841 - 1935). The quote is found in an article written by Justice Holmes in 1918 for the "Harvard Law Review" v. 32, page 40. The quote is also found in the book "Statistically Speaking, a Dictionary of Quotations" by Carl Gaither and Alma Cavazos-Gaither.
    0
    No votes yet
  • Ellen Gundlach and Nancy Palaez (both of Purdue University) use Calibrated Peer Review, an online writing and peer evaluation program available from UCLA, to introduce statistical literacy to Nancy's freshman biology students and to bring a real-world context to statistical concepts for Ellen's introductory statistics classes in an NSF-funded project. CPR allows instructors in large classes to give their students frequent writing assignments without a heavy grading burden. Ellen and Nancy have their students read research journal articles on interesting subjects and use guiding questions to evaluate these articles for statistical content, experimental design features, and ethical concerns.
    0
    No votes yet
  • Statistics educators are keenly aware of the value of using real data to help students see the relevance and applicability of statistics. The federal statistical agencies have invested in significant efforts to make data accessible and available. In this webinar, Ron Wasserstein will point you to these resources, discussing their uses and limitations.
    0
    No votes yet
  • November 13, 2007 Teaching and Learning webinar presented by Michael Rodriguez and Andrew Zieffler, University of Minnesota, ad hosted by Jackie Miller, The Ohio State University. This webinar includes an introduction to the idea of assessment for learning - assessments that support learning, enhance learning, and provides additional learning opportunities that support instruction. Several fundamental measurement tools are described to support the development of effective assessments that work.
    0
    No votes yet
  • January 8, 2008 Teaching and Learning webinar presented by Dennis Pearl, The Ohio State University and hosted by Jackie Miller, The Ohio State University. This presentation describes the "Buffet" method for teaching multi-section courses. In this method, students are offered a choice of content delivery strategies designed to match different individual learning styles. The choice is exercised through an on-line "contract" entered into by students at the beginning of the term. The webinar describes the Ohio State experiences with the buffet strategy and discusses how key elements of the strategy can also be adapted to smaller classes to improve student learning.
    0
    No votes yet
  • February 12, 2008 Teaching and Learning webinar presented by Christopher J. Malone, Winona State University and hosted by Jackie Miller, The Ohio State University. The procedural steps involved in completing a statistical investigation are often discussed in an introductory statistics course. For example, students usually gain knowledge about developing an appropriate research question, performing appropriate descriptive and graphical summaries, completing the necessary inferential procedures, and communicating the results of such an analysis. The traditional sequencing of topics in an introductory course places statistical inference near the end. As a result, students have limited opportunities to perform a complete statistical investigation. In this webinar, Dr. Malone proposes a new sequencing of topics that may enhance students' ability to perform a complete statistical investigation from beginning to end.
    0
    No votes yet
  • June 10, 2008 Teaching and Learning webinar presented by Robert delMas, University of Minnesota and Marsha Lovett, Carnegie Mellon University and hosted by Jackie Miller, The Ohio State University. There is a large body of research on the mechanisms underlying student learning. This webinar explores four principles distilled from this research - the role of prior knowledge, how students organize knowledge, meaningful engagement, and goal-directed practice and feedback - and illustrate their application in the teaching of statistics. A more detailed example is given to show how these principles can be integrated to develop and support our students' conceptual understanding.
    0
    No votes yet
  • August 12, 2008 Teaching and Learning webinar presented by Kathryn Plank, The Ohio State University; and Michele DiPietro, Carnegie Mellon University and hosted by Jackie Miller, The Ohio State University. There are many good reasons to incorporate thinking about diversity into a course, not the least of which is that it can have a real impact on student learning and cognitive development. This webinar explores both how the tools of statistics can help students better understand complex and controversial issues, and, in the other direction, how using these complex and controversial issues can help facilitate deeper learning of statistics.
    0
    No votes yet
  • October 14, 2008 Teaching and Learning webinar presented by Daniel Kaplan, Macalester College and hosted by Jackie Miller, The Ohio State University. George Cobb describes the core logic of statistical inference in terms of the three Rs: Randomize, Repeat, Reject. Note that all three Rs involve process or action. Teaching this core logic is more effective when students are able to carry out these actions on real data. This webinar shows how to use computers effectively with introductory-level students to teach them the three Rs of inference. This is done with another R: the statistical software package. The simulations that are carried out involve constructing confidence intervals, demonstrating the idea of "coverage," hypothesis testing, and confounding and covariation.
    0
    No votes yet

Pages