Resource Library

Statistical Topic

Advanced Search | Displaying 181 - 190 of 528
  • April 10, 2007 webinar presented by Maria C. Pruchnicki, The Ohio State University, and hosted by Jackie Miller, The Ohio State University. Distance education and online learning opportunities, collectively known as "e-learning", are becoming increasingly used in higher education. Nationally, online enrollment increased to 3.2 million students in 2005, compared to 2.3 million in 2004. Furthermore, nearly 60% of higher education institutions identify e-learning as part of their long-term education strategy. Newer educational technologies including course management systems and Internet-based conferencing software can be used to both deliver content and engage participants as part of a social learning community. However, even experienced faculty can face pedagogical and operational challenges as they transition to the online environment. This interactive presentation discusses a systematic approach to developing web-based instruction, with an Ohio State University experience as a case example.
    0
    No votes yet
  • Webinar recorded May 9, 2006 presented by Carl Lee of Central Michigan University and hosted by Jackie Miller of The Ohio State University. Do you use hands-on activities in your class? Would you be interested in using data collected by students from different classes at different institutions? Would you be interested in sharing your students' data with others? Does it take more time than you would like to spend in your class for hands-on activities? Do you have to enter the hands-on activity data yourself after the class period? If your answer to any of the above questions is "YES", then, this Real-Time Online Database approach should be beneficial to your class. In this presentation, Dr. Lee (1) introduces the real-time online database (stat.cst.cmich.edu/statact) funded by a NSF/CCL grant, (2) demonstrates how to use the real-time database to teach introductory statistics using two of the real-time activities and (3) shares with you some of the assessment activities including activity work sheets and projects.
    0
    No votes yet
  • The AIMS project developed lesson plans and activities based on innovative materials that have been produced in the past few years for introductory statistics courses. These lesson plans and student activity guides were developed to help transform an introductory statistics course into one that is aligned with the Guidelines for Assessment and Instruction in Statistics Education (GAISE) for teaching introductory statistics courses. The lessons build on implications from educational research and also involve students in small and large group discussion, computer explorations, and hands-on activities.
    0
    No votes yet
  • A cartoon that might be used in introducing scatterplots and correlation. Cartoon by John Landers (www.landers.co.uk) based on an idea from Dennis Pearl (The Ohio State University). Free to use in the classroom and on course web sites.
    0
    No votes yet
  • In this activity, students explore calculations with simple rates and proportions, and basic time series data, in the context of news coverage of an important statistical study. From 1973 to 1995, a total of 4578 US death penalty cases went through the full course of appeals, with the result that 68% of the sentences were overturned! Reports of the study in various newspapers and magazines fueled public debate about capital punishment.
    0
    No votes yet
  • In this activity, students learn the true nature of the chi-square and F distributions in lecture notes (PowerPoint file) and an Excel simulation. This leads to a discussion of the properties of the two distributions. Once the sum of squares aspect is understood, it is only a short logical step to explain why a sample variance has a chi-square distribution and a ratio of two variances has an F-distribution. In a subsequent activity, instances of when the chi-square and F-distributions are related to the normal or t-distributions (e.g. Chi-square = z2, F = t2) will be illustrated. Finally, the activity will conclude with a brief overview of important applications of chi-square and F distributions, such as goodness-of-fit tests and analysis of variance.
    0
    No votes yet
  • This group activity illustrates the concepts of size and power of a test through simulation. Students simulate binomial data by repeatedly rolling a ten-sided die, and they use their simulated data to estimate the size of a binomial test. They carry out further simulations to estimate the power of the test. After pooling their data with that of other groups, they construct a power curve. A theoretical power curve is also constructed, and the students discuss why there are differences between the expected and estimated curves. Key words: Power, size, hypothesis testing, binomial distribution
    0
    No votes yet
  • This activity allows students to explore the relationship between sample size and the variability of the sampling distribution of the mean. Students use a Java applet to specify the shape of the "parent" distribution and two sample sizes. The simulation then samples from the parent distribution to approximate the sampling distributions for the two sample sizes. Students can see both sampling distributions at the same time making them easy to compare. The activity also allows students to determine the probability of extreme sample means for the different sample sizes so that they can discover that small sample sizes are much more likely than large samples to produce extreme values. Keywords: sampling distribution, sample size, simulation
    0
    No votes yet
  • This interactive lecture activity motivates the need for sampling. "Why sample, why not just take a census?" Under time pressure, students count the number of times the letter F appears in a paragraph. The activity demonstrates that a census, even when it is easy to take, may not give accurate information. Under the time pressure measurement errors are more frequently made in the census rather than in a small sample.
    0
    No votes yet
  • This activity illustrates the convergence of long run relative frequency to the true probability. The psychic ability of a student from the class is studied using an applet. The student is asked to repeatedly guess the outcome of a virtual coin toss. The instructor enters the student's guesses and the applet plots the percentage of correct answers versus the number of attempts. With the applet, many guesses can be entered very quickly. If the student is truly a psychic, the percentage correct will converge to a value above 0.5.
    0
    No votes yet

Pages