Calculates the areas under the curve of the normal distribution falling to the left of -z, to the right of +z, and between -z and +z.
Calculates the areas under the curve of the normal distribution falling to the left of -z, to the right of +z, and between -z and +z.
Given the population incidence of a certain disease, and the conditional probabilities of positive and negative test results, what are the probabilities for a particular test result of a true positive, true negative, false positive, and false negative? Adaptable to other kinds of conditional situations. Although this page is adaptable to a variety of backward probability situations, its exemplary case is the one in which one is seeking to make sense of the result of a medical test.
To perform calculations using Bayes' theorem, enter the probability for one or the other of the items in each of the following pairs (the remaining item in each pair will be calculated automatically). A probability value can be entered as either a decimal fraction such as .25 or a common fraction such as 1/4
An application of Bayes Theorem that performs the same calculations for the situation where the several probabilities are constructed as indices of subjective confidence.
This page will generate a graphic and numerical display of the properties of a binomial sampling distribution, for any values of p and q, and for values of n between 1 and 40, inclusive.
Calculates the z-ratio and associated one-tail and two-tail probabilities for the difference between two correlated proportions, such as might be found in the case where the proportions are based on the same sample of subjects or on matched samples.
Calculates the z-ratio and associated one-tail and two-tail probabilities for the difference between two independent proportions.
Using the Fisher r-to-z transformation, this page will calculate a value of z that can be applied to assess the significance of the difference between two correlation coefficients, r_a and r_b, found in two independent samples. If r_a is greater than r_b, the resulting value of z will have a positive sign; if r_a is smaller than r_b, the sign of z will be negative.
This page will calculate the 0.95 and 0.99 confidence intervals for rho, based on the Fisher r-to-z transformation. To perform the calculations, enter the values of r and n in the designated places, then click the "Calculate" button. Note that the confidence interval of rho is symmetrical around the observed r only with large values of n.
Using the Fisher r-to-z transformation, this page will calculate a value of z that can be applied to assess the significance of the difference between r, the correlation observed within a sample of size n and rho, the correlation hypothesized to exist within the population of bivariate values from which the sample is randomly drawn. If r is greater than rho, the resulting value of z will have a positive sign; if r is smaller than rho, the sign of z will be negative.