This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: linear probability model, non-constant variance, logistic model, logit transformation, and probit link.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: linear probability model, non-constant variance, logistic model, logit transformation, and probit link.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: linear regression, generalized linear models, link function, deviance, and modeling.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: Pearson's residuals and rules for partitioning an I x J contingency tables as ways to determine association between variables.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: linear association, correlation coefficient, ridits/modified ridits, nonparametric methods, Cochran-Armitage Trend test,
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: uncertainty coefficient, ordinal trends, the gamma statistic and linear association, conditional independence, marginal independence, and Simpson's Paradox.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: generalized IxJ contingency tables, degrees of freedom, Fisher's exact test, and generalized odds ratio.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: Pearson's chi-square; the empirical logit; and prospective, case-control, and cross-sectional studies.
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: 2x2 contingency tables, fixing columns and rows, MLE, and previous topics within the context of contingency tables (variance, confidence intervals, standard error approximation, likelihood ratio, etc.).
This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: Pearson's chi-square; the empirical logit; and prospective, case-control, and cross-sectional studies.
A song for use in helping students explore Simpson’s paradox and recognize how a third variable might drive the relationship between two others. Lyrics & Music © 2016 Monty Harper.This song is part of an NSF-funded library of interactive songs that involved students creating responses to prompts that are then included in the lyrics (see www.causeweb.org/smiles for the interactive version of the song, a short reading covering the topic, and an assessment item).