This site provides the description and instructions for as well as the link to the Diffusion Limited Aggregation: Growing Fractal Structures applet. This applet strives to describe, classify, and measure different random fractal patterns in nature.
This is the description and instructions for the Two-Dimensional Random Walk applet. This Applet relates random coin-flipping to random motion but in more than one direction (dimension). It covers mean squared distance in the discussion.
This is the description and instructions for the One-Dimensional Random Walk applet. This Applet relates random coin-flipping to random motion. It strives to show that randomness (coin-flipping) leads to some sort of predictable outcome (the bell-shaped curve).
This is the description and instructions for the Can You Beat Randomness?- The Lottery Game applet. It is a simulation of flipping coins. Students are asked to make conjectures about randomness and how certain strategies affect randomness. It strives to show the "growth of order out of randomness."
This is the description and instructions for the Monte Carlo Estimation of Pi applet. It is a simulation of throwing darts at a figure of a circle inscribed in a square. It shows the relationship between the geometry of the figure and the statistical outcome of throwing the darts.
This site provides a collection of applets and their descriptions. Some of the titles include the Monte Carlo Estimation of Pi, Can You Beat Randomness?, One-Dimensional Random Walk, Two-Dimensional Random Walk, The Anthill and Molecular Motion, Diffusion Limited Aggregation, The Self-Avoiding Walk, Fractal Coastlines, and Forest Fires and Percolation.
This Java based applet gives students an opportunity to work through confidence interval problems for the mean. The material provides written word problems in which an individual must be able to correctly identify the given parts for a confidence interval calculation, and then be able to use this information to find the confidence interval. It gives step by step prompts to encourage students to choose the correct numbers and "cast of characters".
This section on Common Statistical Tests uses an example on faculty publications to show users how to perform a one-sample t test. The discussion includes one-tailed and two-tailed tests.