Resource Library

Statistical Topic

Advanced Search | Displaying 81 - 90 of 351
  • Song about the need to show a significant result in order to have a manuscript published. May be sung to the tune of Robert Feldman, Gerald Goldstein and Richard Gottehrer's 1963 song "My Boyfriend's Back," popularized by The Angels. Lyrics by Marc Coram and Matthew Finkelman (December, 2003). This song is part of the "Stanford Statistics Songbook" found at www.bscb.cornell.edu/~hooker/StanfordStatisticsSongbook.pdf Free to use for non-commercial educational purposes. Contact author to use in publications or for commercial purposes. Musical accompaniment realization and vocals are by Joshua Lintz from University of Texas at El Paso.

    0
    No votes yet
  • Song about the pleasure of teaching statistics when the class is engaged. May be sung to the tune of John Lennon and Paul McCartney's 1963 song "I Want to Hold Your Hand." Lyrics by Armin Schwartzman (December, 2003). This song is part of the "Stanford Statistics Songbook" found at www.bscb.cornell.edu/~hooker/StanfordStatisticsSongbook.pdf Free to use for non-commercial educational purposes. Contact author to use in publications or for commercial purposes. Musical accompaniment realization and vocals are by Joshua Lintz from University of Texas at El Paso.

    0
    No votes yet
  • Song covering a variety of statistical topics. May be sung to the tune of John Lennon's 1969 song "Give Peace a Chance." Lyrics by Armin Schwartzman (December, 2003). This song is part of the "Stanford Statistics Songbook" found at www.bscb.cornell.edu/~hooker/StanfordStatisticsSongbook.pdf Free to use for non-commercial educational purposes. Contact author to use in publications or for commercial purposes. Musical accompaniment realization and vocals are by Joshua Lintz from University of Texas at El Paso.

    0
    No votes yet
  • Song about the benefits of the Bayesian approach to statistics. May be sung to the tune of Sonny and Cher's 1965 song "I Got You Babe." Lyrics by Matthew Finkelman (December, 2003). This song is part of the "Stanford Statistics Songbook" found at www.bscb.cornell.edu/~hooker/StanfordStatisticsSongbook.pdf Free to use for non-commercial educational purposes. Contact author to use in publications or for commercial purposes. Musical accompaniment realization by Joshua Lintz male vocals by Joshua Lintz and female vocals by Marianna Sandoval from University of Texas at El Paso.

    0
    No votes yet
  • A joke about the tendency for Math and Statistics textbooks to have an abundance of homework style problems.

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data.  This lecture overs the following: conditional logistic regression, conditional likelihood for matched pairs, the non-central hypergeometric, the conditional maximum likelihood estimator (CMLE), conditional confidence interval for odds ratios, and McNemar's statistic.

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: sparse tables, sampling zeros, structural zeros, and log-linear model (and limitations).

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: partial/conditional tables, confounding, types of independence (mutual, joint, marginal, and conditional), identifiability constraints, partial odds ratios, hierarchical log-linear model, pairwise interaction log-linear model, conditional independence log-linear model, goodness of fit, and model building.

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: conditional independence, log-linear models for 2x2 tables, expected counts, logistic regression, odds ratio, parameters of interest for different designs and the MLEs, poisson log-linear model, double dichotomy, the multinomial, and the multinomial log-linear model.

    0
    No votes yet
  • This presentation is a part of a series of lessons on the Analysis of Categorical Data. This lecture covers the following: ordinal regression models, cumulative probabilities, non-proportional odds, score stat for proportionl odds, MLEs, the adjacent categories logit, and proportional odds model.

    0
    No votes yet

Pages

register