Resource Library

Advanced Search | Displaying 251 - 260 of 925
  • A song for use in helping students interpret the basics of regression including checking assumptions interpretation of slope, r, and r2.  Lyric © 2015 Lawrence M. Lesser; Music by Dominic Dousa. This song is part of an NSF-funded library of interactive songs that involved students creating responses to prompts that are then included in the lyrics (see www.causeweb.org/smiles for the interactive version of the song, a short reading covering the topic, and an assessment item).

    0
    No votes yet
  • A song for use in helping students to reason about mean and median and the effect of an outlier.  Lyrics & Music © 2016 Amy Adler. This song is part of an NSF-funded library of interactive songs that involved students creating responses to prompts that are then included in the lyrics (see www.causeweb.org/smiles for the interactive version of the song, a short reading covering the topic, and an assessment item).

    0
    No votes yet
  • A song to teach about the relationship between the slope of the regression line and the correlation. The lyric was authored by Lawrence Mark Lesser from the University of Texas at El Paso. The song may be sung to the tune of the English lullaby "Twinkle Twinkle Little Star" (Jane Taylor, 1806). Free for use in non-commercial teaching. This song is also part of an NSF-funded library of interactive songs that involved students creating responses to prompts that are then included in the lyrics (see www.causeweb.org/smiles for the interactive version of the song, a short reading covering the topic, and an assessment item).

    0
    No votes yet
  • This applet simulates rolling dice and displays the outcomes in a histogram. Students can choose to roll 1, 2, 6, or 9 dice either 1, 10, 20, or 100 times. The outcome studied is the sum of the dice and a red line is drawn on the histogram to show expected number of occurences of each outcome.

    0
    No votes yet
  • EasyCharts is a complete library of java chart components, chart applets, and chart servlets that enable programmers to add charts and graphs in java applications, web applications, and web pages with just a few lines of code. The java chart library includes bar charts, line charts, and pie charts and is highly configurable. The java chart library supports charts with multiple data series, overlay charts, drilldown charts, and interactive features such as zooming and scrolling of chart data.

    0
    No votes yet
  • This group activity focuses on conducting an experiment to determine which of two brands of paper towels are more absorbent by measuring the amount of water absorbed. A two-sample t-test can be used to analyze the data, or simple graphics and descriptive statistics can be used as an exploratory analysis. Students are asked to think about design issues, and to write a short report stating their results and conclusions, along with an evaluation of the experimental design. Key words: Two-sample t-test

    0
    No votes yet
  • The activity is designed to help students develop a better intuitive understanding of what is meant by variability in statistics. Emphasis is placed on the standard deviation as a measure of variability. As they learn about the standard deviation, many students focus on the variability of bar heights in a histogram when asked to compare the variability of two distributions. For these students, variability refers to the "variation" in bar heights. Other students may focus only on the range of values, or the number of bars in a histogram, and conclude that two distributions are identical in variability even when it is clearly not the case. This activity can help students discover that the standard deviation is a measure of the density of values about the mean of a distribution and to become more aware of how clusters, gaps, and extreme values affect the standard deviation. Key words: Variability, standard deviation

    0
    No votes yet
  • This group activity illustrates the concepts of size and power of a test through simulation. Students simulate binomial data by repeatedly rolling a ten-sided die, and they use their simulated data to estimate the size of a binomial test. They carry out further simulations to estimate the power of the test. After pooling their data with that of other groups, they construct a power curve. A theoretical power curve is also constructed, and the students discuss why there are differences between the expected and estimated curves. Key words: Power, size, hypothesis testing, binomial distribution

    0
    No votes yet
  • This activity is an advanced version of the "Keep your eyes on the ball" activity by Bereska, et al. (1999). Students should gain experience with differentiating between independent and dependent variables, using linear regression to describe the relationship between these variables, and drawing inference about the parameters of the population regression line. Each group of students collects data on the rebound heights of a ball dropped multiple times from each of several different heights. By plotting the data, students quickly recognize the linear relationship. After obtaining the least squares estimate of the population regression line, students can set confidence intervals or test hypotheses on the parameters. Predictions of rebound length can be made for new values of the drop height as well. Data from different groups can be used to test for equality of the intercepts and slopes. By focusing on a particular drop height and multiple types of balls, one can also introduce the concept of analysis of variance. Key words: Linear regression, independent variable, dependent variables, analysis of variance

    0
    No votes yet
  • Which is more robust against outliers: mean or median?  This app demonstrates the (in)stability of these descriptive statistics as the value of an outlier and the number of data points change.

    0
    No votes yet

Pages

register