Resource Library

Advanced Search | Displaying 131 - 140 of 920
  • This page calculates the point biserial correlation coefficient for the case where one variable is dichotomous and the other is non-dichotomous. This page allows the user to input the data directly or copy and paste from a spreadsheet application and provides data summary.

    0
    No votes yet
  • The following pages calculate r, r-squared, regression constants, Y residuals, and standard error of estimate for a set of N bivariate values of X and Y, and perform a t-test for the significance of the obtained value of r. Values of X and Y are entered directly into individual data cells. This page will also work with samples of any size, though it will be rather unwieldy with samples larger than about N=50. As the page opens, you will be prompted to enter the value of N.

    0
    No votes yet
  • This page has two calculators. One will cacluate a simple logistic regression, while the other calculates the predicted probability and odds ratio. There is also a brief tutorial covering logistic regression using an example involving infant gestational age and breast feeding. Please note, however, that the logistic regression accomplished by this page is based on a simple, plain-vanilla empirical regression.

    0
    No votes yet
  • This page will calculate the intercorrelations (r and r2) for up to five variables, designated as A, B, C, D, and E.

    0
    No votes yet
  • In this free online video program, "students will understand inference for simple linear regression, emphasizing slope, and prediction. This unit presents the two most important kinds of inference: inference about the slope of the population line and prediction of the response for a given x. Although the formulas are more complicated, the ideas are similar to t procedures for the mean sigma of a population."

    0
    No votes yet
  • The Student Dust Counter is an instrument aboard the NASA New Horizons mission to Pluto, launched in 2006. As it travels to Pluto and beyond, SDC will provide information on the dust that strikes the spacecraft during its 14-year journey across the solar system. These observations will advance our understanding of the origin and evolution of our own solar system, as well as help scientists study planet formation in dust disks around other stars.

    In this lesson, students explore the SDC data interface to establish any trends in the dust distribution in the solar system. Students record the number of dust particles, "hits," recorded by the instrument and the average mass of the particles in a given region.

    0
    No votes yet
  • The Student Dust Counter is an instrument aboard the NASA New Horizons mission to Pluto, launched in 2006. As it travels to Pluto and beyond, SDC will provide information on the dust that strikes the spacecraft during its 14-year journey across the solar system. These observations will advance human understanding of the origin and evolution of our own solar system, as well as help scientists study planet formation in dust disks around other stars. 

    In this lesson, students learn the concepts of averages, standard deviation from the mean, and error analysis. Students explore the concept of standard deviation from the mean before using the Student Dust Counter data to determine the issues associated with taking data, including error and noise. Questions are deliberately open-ended to encourage exploration.

    0
    No votes yet
  • The Neutral Buoyancy Laboratory allows astronauts an atmosphere resembling zero gravity (weightlessness) in order to train for missions involving spacewalks. In this activity, students will evaluate pressures experienced by astronauts and scuba divers who assist them while training in the NBL.  This lesson addresses correlation, regression, residuals, inerpreting graphs, and making predictions.

    NASA's Math and Science @ Work project provides challenging supplemental problems for students in advanced science, technology, engineering and mathematics, or STEM classes including Physics, Calculus, Biology, Chemistry and Statistics, along with problems for advanced courses in U.S. History and Human Geography.

    0
    No votes yet
  • Math and Science @ Work presents an activity for high school AP Statistics students. In this activity, students will look at data from an uncalibrated radar and a calibrated radar and determine how statistically significant the error is between the two different data sets.

    NASA's Math and Science @ Work project provides challenging supplemental problems for students in advanced science, technology, engineering and mathematics, or STEM classes including Physics, Calculus, Biology, Chemistry and Statistics, along with problems for advanced courses in U.S. History and Human Geography.

    0
    No votes yet
  • NASA's Math and Science @ Work presents an activity focused on correlation coefficients, weighted averages and least squares. Students will analyze the data collected from a NASA experiment, use different approaches to estimate the metabolic rates of astronauts, and compare their own estimates to NASA's estimates.

    NASA's Math and Science @ Work project provides challenging supplemental problems for students in advanced science, technology, engineering and mathematics, or STEM classes including Physics, Calculus, Biology, Chemistry and Statistics, along with problems for advanced courses in U.S. History and Human Geography.

    0
    No votes yet

Pages