Resource Library

Advanced Search | Displaying 811 - 820 of 1111
  • This page explores Benford's law and the Pareto Principle (or 80/20 rule). Benford's law may also have a wider meaning if the digits it evaluates are considered ranks or places. The digit's probability of occurring could be considered the relative share of total winnings for each place (1st through 9th). In other words, 1st place would win 30.1%, 2nd place 17.6%, 3rd 12.5%,... 9th place 4.6% of the available rewards. The normalized Benford curve could be used as a model for ranked data such as the wealth of individuals in a country. To determine if the Benford model gives results similar to those of the Pareto principle we use the normalized Benford equation in a computer program.
    0
    No votes yet
  • This page explores Benford's Law: For naturally occurring data, the digits 1 through 9 do not have equal probability of being the first significant digit in a number; the digit 1 has greater odds of being the first significant digit than the others. This law can be used to catch tax fraud because truly random numbers used by embezzlers do not meet this condition.
    0
    No votes yet
  • This is an example of "growing" a decision tree to analyze two possible outcomes. The tree's branches examine the two possible conditions of employee drug use with corresponding probabilities. This example looks at the final outcome probabilities of being correctly and incorrectly identified versus testing accuracy.
    0
    No votes yet
  • This video is an example of what is known in psychology as selective attention. When a person is instructed to only focus on the number of times a ball is passed between players wearing a white shirt it is sometimes difficult to see what else is going on.
    0
    No votes yet
  • This webpage uses the criminal trials in the US Justice system to illustrate hypothesis testing, type I error, and type II error. An applet allows the user to examine the probability of type I errors and type II errors under various conditions. An applet allows users to visualize p-values and the power of a test. Keywords: type I error, type II error, type one error, type two error, type 1 error, type 2 error
    0
    No votes yet
  • This text document lists detailed learning objectives for introductory statistics courses. Learning objectives are brief, clear statements of what learners will be able to perform at the end of a course. These objectives were developed for a one semester general education introductory statistics course. The objectives cover the broad categories of Graphics, Summary Statistics, The Normal Distribution, Correlation and Scatterplots, Introduction to Regression, Two way Tables, Data Collection and Surveys, Basic Probability, Sampling Distributions, Confidence Intervals, Tests of Hypothesis, and T-distributions.
    0
    No votes yet
  • This lesson describes bootstrapping in the context of a statistics class for psychology students.
    0
    No votes yet
  • This short article discusses the difference between "important" and "statistically significant." The data used come from a study comparing male faculty salaries to female faculty salaries.
    0
    No votes yet
  • This short article discusses how the comparative ratios of the tails of normal distributions can result in bias in hiring practices. It contains a link to an applet that shows the comparative tail probability ratios.
    0
    No votes yet
  • This exercise uses descriptive statistics to analyze a data set about how rats respond to rock music vs. classical music.
    0
    No votes yet

Pages

register