Resource Library

Statistical Topic

Advanced Search | Displaying 21 - 30 of 167
  • The activity is designed to help students develop a better intuitive understanding of what is meant by variability in statistics. Emphasis is placed on the standard deviation as a measure of variability. As they learn about the standard deviation, many students focus on the variability of bar heights in a histogram when asked to compare the variability of two distributions. For these students, variability refers to the "variation" in bar heights. Other students may focus only on the range of values, or the number of bars in a histogram, and conclude that two distributions are identical in variability even when it is clearly not the case. This activity can help students discover that the standard deviation is a measure of the density of values about the mean of a distribution and to become more aware of how clusters, gaps, and extreme values affect the standard deviation. Key words: Variability, standard deviation

    0
    No votes yet
  • This group activity illustrates the concepts of size and power of a test through simulation. Students simulate binomial data by repeatedly rolling a ten-sided die, and they use their simulated data to estimate the size of a binomial test. They carry out further simulations to estimate the power of the test. After pooling their data with that of other groups, they construct a power curve. A theoretical power curve is also constructed, and the students discuss why there are differences between the expected and estimated curves. Key words: Power, size, hypothesis testing, binomial distribution

    0
    No votes yet
  • This activity is an advanced version of the "Keep your eyes on the ball" activity by Bereska, et al. (1999). Students should gain experience with differentiating between independent and dependent variables, using linear regression to describe the relationship between these variables, and drawing inference about the parameters of the population regression line. Each group of students collects data on the rebound heights of a ball dropped multiple times from each of several different heights. By plotting the data, students quickly recognize the linear relationship. After obtaining the least squares estimate of the population regression line, students can set confidence intervals or test hypotheses on the parameters. Predictions of rebound length can be made for new values of the drop height as well. Data from different groups can be used to test for equality of the intercepts and slopes. By focusing on a particular drop height and multiple types of balls, one can also introduce the concept of analysis of variance. Key words: Linear regression, independent variable, dependent variables, analysis of variance

    0
    No votes yet
  • These cheat sheets make it easy to learn about and use some of the favorite packages of RStudio. 

    0
    No votes yet
  • This applet is designed to approximate the value of Pi. It accomplishes this purpose by firing random data points at a circle inscribed within a square. The probability of a data point landing within the circle is a ratio of the circle's area to the area of the square.

    0
    No votes yet
  • An applet explores the following problem: A long day hiking through the Grand Canyon has discombobulated this tourist. Unsure of which way he is randomly stumbling, 1/3 of his steps are towards the edge of the cliff, while 2/3 of his steps are towards safety. From where he stands, one step forward will send him tumbling down. What is the probability that he can escape unharmed?

    0
    No votes yet
  • Students explore the definition and interpretations of the probability of an event by investigating the long run proportion of times a sum of 8 is obtained when two balanced dice are rolled repeatedly. Making use of hand calculations, computer simulations, and descriptive techniques, students encounter the laws of large numbers in a familiar setting. By working through the exercises, students will gain a deeper understanding of the qualitative and quantitative relationships between theoretical probability and long run relative frequency. Particularly, students investigate the proximity of the relative frequency of an event to its probability and conclude, from data, the order on which the dispersion of the relative frequency diminishes. Key words: probability, law of large numbers, simulation, estimation

    Includes project file for Minitab and coding for a dice rolling simulation.

    0
    No votes yet
  • Poses the following problem: Suppose there was one of six prizes inside your favorite box of cereal. Perhaps it's a pen, a plastic movie character, or a picture card. How many boxes of cereal would you expect to have to buy, to get all six prizes?

    0
    No votes yet
  • Gives some background on the Buffon needle problem. Has a link to an applet that allows one to simulate dropping a needle1, 10, 100, or 1000 times. One also has control over the length of the needle.

    0
    No votes yet
  • R is a language and environment for statistical computing and graphics. It is a GNU project which is similar to the S language and environment which was developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. R can be considered as a different implementation of S. There are some important differences, but much code written for S runs unaltered under R.

    R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, …) and graphical techniques, and is highly extensible. The S language is often the vehicle of choice for research in statistical methodology, and R provides an Open Source route to participation in that activity.

    0
    No votes yet

Pages

register