Collection

  • Those who complete this course will be able to select appropriate methods of multivariate data analysis, given multivariate data and study objectives; write SAS and/or Minitab programs to carry out multivariate data analyses; and interpret results of multivariate data analyses.  Perfect for students and teachers wanting to learn/acquire materials for this topic.

    5
    Average: 5 (1 vote)
  • The focus of this class is a multivariate analysis of discrete data. We will learn basic statistical methods and discuss issues relevant for the analysis of some discrete distribution, cross-classified tables of counts, (i.e., contingency tables), success/failure records, questionnaire items, judge's ratings, etc. Being familiar with matrix algebra is helpful in completing this course.  Perfect for students and teachers wanting to learn/acquire materials for this topic.

    5
    Average: 5 (1 vote)
  • Statistics is often taught as though the design of the data collection and the data cleaning have already been done in advance.  However, as most practicing statisticians quickly learn, typically problems that arise at the analysis stage, could have been avoided if the experimenter had consulted a statistician before the experiment was done and the data were conducted.  This course is created to provide an understanding of how experiments should be designed so that when the data are collected, these shortcomings are avoided.  Perfect for students and teachers wanting to learn/acquire materials for this topic.

    5
    Average: 5 (1 vote)
  • This is a graduate level course/collection of lessons in analysis of variance (ANOVA), including randomization and blocking, single and multiple factor designs, crossed and nested factors, quantitative and qualitative factors, random and fixed effects, split plot and repeated measures designs, crossover designs and analysis of covariance (ANCOVA). Perfect for students and teachers alike looking to learn/acquire materials on ANOVA.

    5
    Average: 5 (1 vote)
  • This graduate level course offers an introduction into regression analysis. A researcher is often interested in using sample data to investigate relationships, with an ultimate goal of creating a model to predict a future value for some dependent variable. The process of finding this mathematical model that best fits the data involves regression analysis.  STAT 501 is an applied linear regression course that emphasizes data analysis and interpretation and is perfect for both students and teachers of statistics courses.

    5
    Average: 5 (1 vote)
  • This UC Berkeley Foundations of Data Science course combines three perspectives: inferential thinking, computational thinking, and real-world relevance. Given data arising from some real-world phenomenon, how does one analyze that data so as to understand that phenomenon? This course teaches critical concepts and skills in computer programming and statistical inference, in conjunction with hands-on analysis of real-world datasets, including economic data, document collections, geographical data, and social networks. It delves into social issues surrounding data analysis such as privacy and design.

    0
    No votes yet
  • This compendium facilitates the creation of good graphs by presenting a set of concrete examples, ranging from the trivial to the advanced. The graphs can all be reproduced and adjusted by copy-pasting code into the R console. Almost every example in this compendium is driven by the same philosophy: A good graph is a simple graph, in the Einsteinian sense that a graph should be made as simple as possible, but not simpler.  A note for R fans: the majority of our plots have been created in base R, but you will encounter some examples in ggplot.

     

    0
    No votes yet
  • One of the original (and still best) sources for archived data.

    5
    Average: 5 (1 vote)
  • The Probability Web is a collection of probability resources designed to be especially helpful to researchers, teachers, and people in the probability community.  Web page links on this site include probabilty/statistics books and journals, information on mathematics and statistics-based careers, statistical software, teaching resources on probabilty topics, and more.

    0
    No votes yet
  • Statistics and probability concepts are included in K–12 curriculum standards—particularly the Common Core State Standards—and on state and national exams. STEW provides free peer-reviewed teaching materials in a standard format for K–12 math and science teachers who teach statistics concepts in their classrooms.

    STEW lesson plans identify both the statistical concepts being developed and the age range appropriate for their use. The statistical concepts follow the recommendations of the Guidelines for Assessment and Instruction in Statistics Education (GAISE) Report: A Pre-K-12 Curriculum Framework, Common Core State Standards for Mathematics, and NCTM Principles and Standards for School Mathematics. The lessons are organized around the statistical problemsolving process in the GAISE guidelines: formulate a statistical question, design and implement a plan to collect data, analyze the data by measures and graphs, and interpret the data in the context of the original question. Teachers can navigate the STEW lessons by grade level and statistical topic.

    0
    No votes yet

Pages

register