People attempting to generate random number sequences usually produce more alternations than expected by chance. They also judge overalternating sequences as maximally random. In this article, the authors review findings, implications, and explanatory mechanisms concerning subjective randomness. The authors next present the general approach of the mathematical theory of complexity, which identifies the length of the shortest program for reproducing a sequence with its degree of randomness. They describe three experiments, based on mean group responses, indicating that the perceived randomness of a sequence is better predicted by various measures of its encoding difficulty than by its objective randomness. These results seem to imply that in accordance with the complexity view, judging the extent of a sequence's randomness is based on an attempt to mentally encode it. The experience of randomness may result when this attempt fails.
The CAUSE Research Group is supported in part by a member initiative grant from the American Statistical Association’s Section on Statistics and Data Science Education