A framework for teaching and assessing reasoning about variability


Authors: 
Garfield, J., & Ben-Zvi, D.
Category: 
Volume: 
4(1)
Pages: 
92–99
Year: 
2005
Publisher: 
Statistics Education Research Journal
Abstract: 

This article is a discussion of and reaction to two collections of papers on research on Reasoning about Variation: Five papers appeared in November 2004 in a Special Issue 3(2) of the Statistics Education Research Journal (by Hammerman and Rubin, Ben-Zvi, Bakker, Reading, and Gould), and three papers appear in a Special Section on the same topic in the present issue (by Makar and Confrey, delMas and Liu, and Pfannkuch). These papers show that understanding of variability is much more complex and difficult to achieve than prior literature has led us to believe. Based on these papers and other pertinent literature, the present paper, written by the Guest Editors, outlines seven components that are part of a comprehensive epistemological model of the ideas that comprise a deep understanding of variability: Developing intuitive ideas of variability, describing and representing variability, using variability to make comparisons, recognizing variability in special types of distributions, identifying patterns of variability in fitting models, using variability to predict random samples or outcomes, and considering variability as part of statistical thinking. With regard to each component, possible instructional goals as well as types of assessment tasks that can be used in research and teaching contexts are illustrated. The conceptual model presented can inform the design and alignment of teaching and assessment, as well as help in planning research and in organizing results from prior and future research on reasoning about variability.

The CAUSE Research Group is supported in part by a member initiative grant from the American Statistical Association’s Section on Statistics and Data Science Education