Algebra level symbolic math

  • This page has two calculators. One will cacluate a simple logistic regression, while the other calculates the predicted probability and odds ratio. There is also a brief tutorial covering logistic regression using an example involving infant gestational age and breast feeding. Please note, however, that the logistic regression accomplished by this page is based on a simple, plain-vanilla empirical regression.

    0
    No votes yet
  • This page will calculate the intercorrelations (r and r2) for up to five variables, designated as A, B, C, D, and E.

    0
    No votes yet
  • This page will calculate the intercorrelations (r) for any number of variables (V1, V2, V3, etc.) and for any number of observations per variable.

    0
    No votes yet
  • This resource defines what a p-value is, why .05 is significant, and when to use it. It also covers related topics such as one-tailed/two-tailed tests and hypothesis testing.
    0
    No votes yet
  • The applet in this section allows for simple data analysis of univariate data. Users can either generate normal or uniform data for k samples or copy and paste data from another source to a text box. A univariate analysis is performed for all k samples. A two-sample t-test (Pooled and Satterthwaite) is performed for k = 2. An ANOVA test is performed for k > 2. This page was formerly located at http://www.stat.vt.edu/~sundar/java/applets/Data.html
    0
    No votes yet
  • The applets in this section of Statistical Java address Power. Users can perform one or two tailed tests for proportions or means for one or two samples. Set the parameters and drag the mouse across the graph to see how effect size affects power. An article and an alternative source for this applet can be found at http://www.amstat.org/publications/jse/v11n3/java/power/ This page was formerly located at http://www.stat.vt.edu/~sundar/java/applets/Power.html
    0
    No votes yet
  • The applets in this section of Statistical Java allow you to see how levels of confidence are achieved through repeated sampling. The confidence intervals are related to the probability of successes in a Binomial experiment. The main page gives the equation for finding confidence intervals and describes the parameters (p, n, alpha). Each applet allows you to change a different parameter and simulate sampling to demonstrate the long run proportion of intervals that contain the true probability of success. The applets are available from a pull-down menu at the bottom of the page. This page was formerly located at http://www.stat.vt.edu/~sundar/java/applets/CI.html
    0
    No votes yet
  • This resource defines and explains Chi square. It takes the user through 5 different categories: 1) Testing differences between p and pi 2) More than two categories 3) Chi-square test of independence 4) Reporting results 5) Exercises.

    0
    No votes yet
  • This resource defines and explains binomial probability, including examples and exercises for the learner.
    0
    No votes yet
  • This resource includes problem-based teaching and learning materials for statistics that are based around specific problems arising in biology, business, geography and psychology. The STEPS modules are intended to be used as problem-based lab material that may support existing coursework.
    0
    No votes yet

Pages