College --Undergrad Lower Division

  •  The Integrated Medical Model (IMM) is a Monte Carlo simulation-based tool designed to quantify the probability of the medical risks and potential consequences that astronauts could experience during a mission. In this activity, students will use Monte Carlo methods with a TI-Nspire™ to simulate and predict probabilities of CO2 headaches aboard the ISS. 

    NASA's Math and Science @ Work project provides challenging supplemental problems for students in advanced science, technology, engineering and mathematics, or STEM classes including Physics, Calculus, Biology, Chemistry and Statistics, along with problems for advanced courses in U.S. History and Human Geography.

    0
    No votes yet
  • The Neutral Buoyancy Laboratory allows astronauts an atmosphere resembling zero gravity (weightlessness) in order to train for missions involving spacewalks. In this activity, students will evaluate pressures experienced by astronauts and scuba divers who assist them while training in the NBL.  This lesson addresses correlation, regression, residuals, inerpreting graphs, and making predictions.

    NASA's Math and Science @ Work project provides challenging supplemental problems for students in advanced science, technology, engineering and mathematics, or STEM classes including Physics, Calculus, Biology, Chemistry and Statistics, along with problems for advanced courses in U.S. History and Human Geography.

    0
    No votes yet
  • Math and Science @ Work presents an activity for high school AP Statistics students. In this activity, students will look at data from an uncalibrated radar and a calibrated radar and determine how statistically significant the error is between the two different data sets.

    NASA's Math and Science @ Work project provides challenging supplemental problems for students in advanced science, technology, engineering and mathematics, or STEM classes including Physics, Calculus, Biology, Chemistry and Statistics, along with problems for advanced courses in U.S. History and Human Geography.

    0
    No votes yet
  • A song to help with discussion of the history of William Sealy Gosset's (a.k.a. Student) result about the t-distribution for modeling standardized means.  The lyrics were written by Lawrence Mark Lesser from The University of Texas at El Paso in 2017 and may be sung to the tune of Jack Norworth and Albert Von Tizle's 1908  standard "Take Me Out to the Ballgame."

    0
    No votes yet
  • A joke to be used in discussing the issue of regression to the mean.  Note that the word "meme" is pronunced like "meem." The joke was written in 2017 by Larry Lesser (The University of Texas at El Paso) and Dennis Pearl (Penn State University).

    0
    No votes yet
  • When performing a hypothesis test about the population mean, a possible reason for the failure of rejection of the null hypothesis is that there's an insufficient sample size to achieve a powerful test. Using a small data set, Minitab is used to check for normality of the data, to perform a 1-Sample t test, and to compute Power and Sample Size for 1-Sample t.

    0
    No votes yet
  • Document (pdf) illustrating a test of normality using an Anderson-Darling test in MINITAB and a test of equality of variances with an F-test in EXCEL.
    0
    No votes yet
  • Powerpoint explaining what power is and how power and sample size are related to one another.
    0
    No votes yet
  • A resource providing information about what the sample size is, what factors the sample size depends on, and how it can be determined,
    5
    Average: 5 (1 vote)
  • Resource providing information about: computation of the sample size and the assumptions that must be made to do so. Several examples are given with different conditions in each, and a table showing minimum sample sizes for a two-sided test.
    0
    No votes yet

Pages