Resource Library

Statistical Topic

Advanced Search | Displaying 231 - 240 of 670
  • This activity illustrates the convergence of long run relative frequency to the true probability. The psychic ability of a student from the class is studied using an applet. The student is asked to repeatedly guess the outcome of a virtual coin toss. The instructor enters the student's guesses and the applet plots the percentage of correct answers versus the number of attempts. With the applet, many guesses can be entered very quickly. If the student is truly a psychic, the percentage correct will converge to a value above 0.5.
    0
    No votes yet
  • The purpose of this activity is to enhance students' understanding of various descriptive measures. In particular, by completing this hands-on activity students will experience a visual interpretation of a mean, median, outlier, and the concept of distance-to-mean.
    0
    No votes yet
  • By means of a simple story and a worksheet with questions we guide the students from research question to arriving at a conclusion. The whole process is simply reasoning, no formulas. We use the reasoning already done by the student to introduce the standard vocabulary of testing statistical hypotheses (null & alternative hypotheses, p-value, type I and type II error, significance level). Students need to be familiar with binomial distribution tables. After the ducks story is finished, the class is asked to come up with their own research question, collect the data, do the hypotheses testing and answer their own research question. The teaching material is intended to be flexible depending of the time available. Instructors can choose to do just the interactive lecture type, interactive lecture + activity, or even add the optional material.
    0
    No votes yet
  • This hands-on activity is appropriate for a lab or discussion section for an introductory statistics class, with 8 to 40 students. Each student performs a binomial experiment and computes a confidence interval for the true binomial probability. Teams of four students combine their results into one confidence interval, then the entire class combines results into one confidence interval. Results are displayed graphically on an overhead transparency, much like confidence intervals would be displayed in a meta-analysis. Results are discussed and generalized to larger issues about estimating binomial proportions/probabilities.
    0
    No votes yet
  • The t-distribution activity is a student-based in-class activity to illustrate the conceptual reason for the t-distribution. Students use TI-83/84 calculators to conduct a simulation of random samples. The students calculate standard scores with both the population standard deviation and the sample standard deviation. The resulting values are pooled over the entire class to give the simulation a reasonable number of iterations. This document provides the instructor with learning objectives, context, mechanics, follow-up, and evidence from use associated with the in-class activity.
    0
    No votes yet
  • This activity provides practice for constructing confidence intervals and performing hypothesis tests. In addition, it stresses interpretation of confidence intervals and comparison and application of results in context.
    0
    No votes yet
  • This activity stresses the importance of writing clear, unbiased survey questions. It explore the types of bias present in surveys and ways to reduce these biases. In addition, the activity covers some basics of surveys: population, sample, sampling frame, and sampling method.
    0
    No votes yet
  • This dataset contains information on temperature, precipitation, and weather stations for 48 states. The data is available in Excel and rich text formats.
    0
    No votes yet
  • This applet generates confidence intervals for means or proportions. The options for confidence intervals for means include "z with sigma," "z with s," or "t." The options for confidence intervals for proportions are "Wald," "Adjusted Wald," or "Score." Users set the population parameters, sample size, number of intervals, and confidence level. Click "Sample," and the applet will graph the intervals. Intervals shown in green contain the true population mean or proportion, while intervals in red do not. The true mean or proportion is shown by a blue line. The applet displays the proportion of intervals containing the population parameter for each sample and a running total of all the samples. Users can also click on a particular interval to display the numerical interval or sort the displayed confidence intervals from smallest to largest. This applet is part of a collection designed to accompany the textbook "Investigating Statistical Concepts, Applications, and Methods" (ISCAM) and is used in Exploration 4.3 on page 327, Investigation 4.3.6 on page 331, and Exploration 4.4 on page 350. This applet also supplements "Workshop Statistics: Discovery with Data," 2nd edition, Activity 19-5 on page 403. Additional materials written for use with these applets can be found at http://www.mathspace.com/NSF_ProbStat/Teaching_Materials/rowell/final/16_cireview_bc322_2.doc and http://www.mathspace.com/NSF_ProbStat/Teaching_Materials/rowell/final/15_sampdistreview_bc322_1.doc.
    0
    No votes yet
  • This text article gives a relatively short description of the concept of p-values and statistical significance. This article aimed at health professionals frames the idea of statistical significance in the setting of a weight loss program. In addition to discussing p-values and comparing them with confidence intervals, the article touches on the ideas of practical significance and the fact that the significance of 0.05 is arbitrary.
    0
    No votes yet

Pages

register