Resource Library

Statistical Topic

Advanced Search | Displaying 41 - 50 of 92
  • A cartoon to teach the importance of including error bars to show the level of chance variation - as opposed to showing only the possibly strong trend that might be shown by averages. The cartoon is #22 in the "Life in Research" series at www.vadio.com. Free to use with attribution in the classroom or on course websites.
    0
    No votes yet
  • This tool provides individuals with opportunities to quiz themselves on levels of measurement in a game-like environment much like "Who Wants to be a Millionaire."
    0
    No votes yet
  • This applet is designed to allow users to explore the relationship between histograms and the most typical summary statistics. The user can choose from several types of histograms (uniform, normal, symmetric, skewed, etc.), or can create their own by manipulating the bars of the histogram. The statistics available for display are mean, median, mode, range, standard deviation, and interquartile range. Also available is a "Practice Guessing" option, in which the values of the statistics are hidden until the user has entered guesses for each value.
    0
    No votes yet
  • A cartoon to teach about comparing parametric versus non-parametric inference. Cartoon by John Landers (www.landers.co.uk) based on an idea from "Lower Bounds on Statistical Humor" by Alan H. Feiveson, Mark Eakin, and Richard Alldredge. Free to use in the classroom and on course web sites.
    0
    No votes yet
  • A cartoon to teach about using boxplots to summarize a distribution. Cartoon by John Landers (www.landers.co.uk) based on an idea from Dennis Pearl (The Ohio State University). Free to use in the classroom and on course web sites.
    0
    No votes yet
  • This NSF funded project provides worksheets and laboratories for introductory statistics. The overview page contains links to 9 worksheets that can be done without technology, which address the topics of obtaining data, summarizing data, probability, regression and correlation, sampling distributions, hypothesis testing and confidence intervals. The page also contains twelve laboratories that require the use of technology. Data sets are provided in Minitab format.
    0
    No votes yet
  • Using cooperative learning methods, this activity helps students develop a better intuitive understanding of what is meant by variability in statistics. Emphasis is placed on the standard deviation as a measure of variability. This lesson also helps students to discover that the standard deviation is a measure of the density of values about the mean of a distribution. As such, students become more aware of how clusters, gaps, and extreme values affect the standard deviation.
    0
    No votes yet
  • Using cooperative learning methods, this lesson introduces distributions for univariate data, emphasizing how distributions help us visualize central tendencies and variability. Students collect real data on head circumference and hand span, then describe the distributions in terms of shape, center, and spread. The lesson moves from informal to more technically appropriate descriptions of distributions.
    0
    No votes yet
  • This applet demonstrates the Binomial distribution by simulating Galton's Board, dropping balls through a triangular array of nails. When a ball hits a nail, it has a 50 percent chance of falling to the left or the right. Because Galton's Board consists of a series of experiments, the piles under the board are the sum of n random variables, where n is the number of rows of nails on the board.
    0
    No votes yet
  • This applet demonstrates the Central Limit Theorem. First, select a distribution (Normal, Uniform, Skewed, Custom) and add or delete data points by clicking on the graph. Then, sample from the parent population and the distribution of the sample mean is shown. Users can also choose to see the distribution of the median, standard deviation, variance, and range.
    0
    No votes yet

Pages