Chance News 10: Difference between revisions
Line 2: | Line 2: | ||
<blockquote> The weather man is never wrong. Suppose he says that there's an 80% chance of rain. If it rains, the 80% chance came up; if it doesn't, the 20% chance came up! - Saul Barron | <blockquote> The weather man is never wrong. Suppose he says that there's an 80% chance of rain. If it rains, the 80% chance came up; if it doesn't, the 20% chance came up! - Saul Barron | ||
.</blockquote> | .</blockquote> | ||
From: [http://ourworld.compuserve.com/homepages/Rainer_Wuerlaender/statquot.htm | From: [http://ourworld.compuserve.com/homepages/Rainer_Wuerlaender/statquot.htm Statistical Quotations] | ||
==Forsooth== | ==Forsooth== | ||
===Literary License=== | ===Literary License=== |
Revision as of 07:50, 30 November 2005
Quotation
The weather man is never wrong. Suppose he says that there's an 80% chance of rain. If it rains, the 80% chance came up; if it doesn't, the 20% chance came up! - Saul Barron .
From: Statistical Quotations
Forsooth
Literary License
"'Four million ... heard it. Ten percent remember it. One percent of those matter. One percent of those do something about it. That's still' - he does the math - 'four people.'" From: _The Betrayal_, by Sabin Willett, NY: Villard (Random House), 1998.
Submitted by Margaret Cibes
Logarithmetic behavior as metaphor
For many years Ed Barbeau has edited a wonderful column in the College Mathematics Journal called Fallacies, Flaws, and Flimflam. In Barbeau's column in the November 2005 issue of the College Math Journal Norton Starr provides a contribution called "Logarithmic behaviour as metaphor". Norton provides examples from a wide variety of writers who say that something is growing logarithmically when they mean it is growing exponentially.
Norton says that he became interested in this when a convocation speaker at his college (Amherst) said:
As opposed to all other appetites which are stimulated by deprivation and satisfied by food, good education stimulates with plenty so that appetite for knowledge and understanding escalate logarithmically to insatiability.
Norton finds examples among faculty, newspapers, television and of course on the web. He writes:
Here are three examples of metaphorical growth from the New York Times, with the third suggesting an improved understanding on the part of this newspaper:
- from a review of Harlow Shapley's autobiography: "if the autobiographer opts for a method he believes will grant him immortality without industry, his risks rise logarithmically."
- from a story about corruption and drugs:"' The drug situation is a horror story, increasing logarithmically.'"
- from a more recent story: "Street crime, fed by an explosion of drug abuse, has risen exponentially."
RRS Coincidence column
Norton Starr, who provides our RSSNews Forsooth items, told us that the RRSNews now has a Coincidence column. He sent us the coincidence story from the Nov 05 RSSNews and suggested some questions relating to this story.
This month's contribution is from Pam Warner of the University of Edinburgh Medical Statistics Unit who relates a story told to her by a colleague named Wilma during a recent morning coffee-break.
Wilma had been waiting in a queue for a check-out (in Edinburgh) and a little boy, accompanying the lady ahead of her in the queue, struck up a conversation with her. He asked her what her name was, and on being told that it was Wilma exclaimed that was the same name as his granny (the lady he was with).
Wilma then returned the compliment, asking him what his name was, and he said Kieran. She in turn commented that that was funny as she had a young grand-daughter (in London) whose name was Kiera.
By this time Kieran's grand-mother (the other Wilma) was involved in the proceedings, and chipped in 'Next thing you will be telling me is that Kiera's Mum's name is Pamela...', to which our Wilma could only reply astounded, 'It is!'
Discussion
(1) What's the likelihood of two instances of a grandmother, her daughter (even though in this case it might be daugher-in-law) and her grandson having the same names, say in Britain?
(2) How does the above probability vary with size of population>
(3) How likely is it that such a pair of trios would encounter each other in person?
item4