


dictions and treat them as true ignore pre-
diction uncertainty, often leading to unreliable
statistical results. (14). Importantly, our in-
vestigation does not use generative AI to im-
pute missing outcomes. Instead, we focus on
uncertainty quantification in settings with par-
tially observed outcomes — that is, where out-
come labels are missing for a subset of the
data. Importantly, our investigation does not
employ generative AI to create imputed data,
but rather examines principled statistical ap-
proaches to uncertainty quantification.

Many practical inference problems involve
incomplete outcome data—where labels Y are
observed for only a small subset of covariate
profiles X, due to cost, logistics, or privacy con-
straints. This setup can be naturally framed as
a missing data problem, where the unobserved
outcomes are treated as missing values. From a
semi-supervised learning perspective, this cor-
responds to a dataset split into a labeled set
(X, Y ) and a much larger unlabeled set X.
Naïve methods that impute the missing Y s us-
ing predictions and treat them as observed can
dramatically understate uncertainty. In con-
trast, we use prediction-powered inference to
calibrate intervals using the labeled subset, ex-
plicitly accounting for prediction error in the
unlabeled pool. This approach enables statis-
tically valid inference under minimal assump-
tions about the missingness mechanism.

Prediction-Powered Inference (PPI) (1) in-
troduces a framework that addresses this chal-
lenge by combining a small labeled subset
with model predictions on a larger unlabeled
pool. By using the average residual on la-
beled data to calibrate results, PPI offers a
way to construct more reliable intervals by cor-
recting for prediction error—without requiring
strong assumptions about why data are miss-
ing. Its refinement, Cross-PPI (16), imple-
ments K-fold sample splitting to ensure that
every prediction and residual is computed out-
of-sample, thereby eliminating in-sample bias.
Through explicitly accounting for prediction
uncertainty, these methods enable valid infer-
ence where additional label collection is pro-
hibitively expensive and classical missing-data
assumptions remain suspect.

Our principal research question is as follows:
To what extent can prediction-powered

inference methods (PPI and Cross-PPI)
provide valid statistical inference with
narrower confidence intervals compared
to classical methods, without requir-
ing strong missing data assumptions,
when applied to moderate-sized scien-
tific datasets across varying labeled pro-
portions? This question addresses a critical
gap in the literature, as most PPI evaluations
have focused on settings with advanced mod-
els or massive datasets. Instead, we investi-
gate performance in contexts more represen-
tative of typical scientific research—datasets
where each observation might represent an ex-
pensive experiment with human or animal sub-
jects. By rigorously benchmarking these meth-
ods across varying labeled proportions, we ex-
plore whether prediction-powered approaches
can provide the statistical validity of classi-
cal methods while achieving tighter confidence
intervals than naïve imputation in resource-
constrained scientific settings.

To investigate this question, we investigate
two complementary analyses:

1. Methodological benchmarking. We
evaluate PPI and Cross-PPI against
three established baselines: (i)c̃lassical
complete-case intervals; (ii)ñaïve plug-
in intervals that ignore prediction error;
and (iii)g̃old-standard intervals computed
from the full set of labels when such labels
are available.

2. Robustness assessment. Extensive
Monte-Carlo experiments over a range of
labeled-set sizes are performed on both a
regression task (Wine Quality) and a clas-
sification task (Census Income), allowing
us to examine interval width and stability
under diverse conditions.

Taken together, the findings show that
PPIand Cross-PPI consistently produce nar-
rower and statistically confident intervals com-
pared to classical analysis, even when the num-
ber of available labels is small.
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2 Background and Literature
Review

Traditional statistical inference relies on high-
quality labeled data, yielding valid but often
inefficient results with wide confidence inter-
vals. However, gold-standard labels are typi-
cally expensive or scarce, making it difficult to
scale such approaches in practice.

To address limited labeled data, researchers
often turn to imputation methods, where ma-
chine learning predictions substitute for miss-
ing or unobserved values. A common approach
is single imputation, using simple techniques
like mean or regression-based substitution (15).
While easy to implement, single imputation
tends to underestimate uncertainty and dis-
tort relationships between variables, especially
under missing not at random (MNAR) mech-
anisms. Regression-based imputation better
preserves dependencies among variables but
still introduces bias and underestimates vari-
ance. These approaches fail to offer statisti-
cally valid inference due to their deterministic
nature.

Multiple imputation improves on this by
generating several plausible datasets and av-
eraging results to preserve variability (9). It
allows for more valid statistical inference by ac-
counting for uncertainty in the imputation pro-
cess. However, it relies on strong modeling as-
sumptions, is computationally demanding, and
may struggle with complex, high-dimensional,
or non-linear data. Inference can still be in-
valid if the imputation model is misspecified.

These limitations have motivated new infer-
ence procedures that directly adjust for pre-
diction error in a model-agnostic way. As ma-
chine learning predictions are increasingly used
in place of direct observations, there is a grow-
ing need to quantify and correct the bias they
introduce (13).

Prediction Powered Inference (PPI), intro-
duced by Angelopoulos et al. in 2023 (1), for-
malizes this idea. PPI combines sparse but
trustworthy labels with abundant but imper-
fect predictions to produce unbiased and more
efficient estimates of population parameters. It
adjusts naive estimates using a rectifier that
corrects for the average prediction error, yield-
ing valid confidence intervals under minimal as-

sumptions. A key advantage is that PPI works
with any machine learning model, regardless of
its internal structure.

Extensions like Cross-PPI (17) improve sta-
bility by using cross-fitting and ensemble pre-
dictions to reduce the variance from data split-
ting. PPI++ (3) further enhances efficiency
and statistical power by optimizing over a tun-
ing parameter λ. These methods have already
seen real-world application, such as in clinical
trials (8), where they enable reduced sample
sizes without sacrificing validity.

Our study builds on this foundation, ap-
plying PPI and its variants to moderate-sized
datasets where data collection is costly or con-
strained by ethical and practical concerns.

3 Preliminaries
This section presents the mathematical
framework for Prediction-Powered Inference
(PPI) and Cross-Prediction-Powered Inference
(Cross-PPI) as introduced by Angelopoulos
et al. (2) and Zrnic and Candès (17), respec-
tively. We focus on the rectifier concept that
enables valid statistical inference when using
machine learning predictions.

3.1 Problem Setup

We consider a setting with a limited number
of labeled data points (Xi, Yi)n

i=1 sampled i.i.d.
from a distribution P , and a larger set of un-
labeled data points (X̃i)N

i=1 with N ≫ n. Our
goal is to infer a population parameter θ∗, such
as E[Y ].

3.2 Prediction-Powered Inference

PPI constructs the estimator:

θ̂PPI = 1
N

∑
_i = 1N f(X̃ ∗ i) − δ (1)

where the rectifier δ is:

δ = 1
n

∑
∗i = 1n(f(X_i) − Y _i) (2)

This correction yields an unbiased estimator of
θ∗ under weak assumptions:

Eθ̂PPI] = EY ] = θ
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3.3 Cross-Prediction-Powered Infer-
ence

Cross-PPI extends PPI by training K mod-
els using cross-fitting on labeled folds, then
combining them. Predictions for each fold are
made out-of-sample to avoid leakage.

Ŷ unlabeled
i = 1

K

K∑
j=1

f (j)(X̃i)

Ŷ labeled
i = f (j)(Xi) (5)

The Cross-PPI estimator is:

θ̂Cross = 1
N

N∑
i=1

Ŷ unlabeled
i

− 1
n

n∑
i=1

(
Ŷ labeled

i − Yi

)
(6)

3.4 Comparing PPI and Cross-PPI

• PPI requires a pre-trained model; Cross-
PPI trains multiple models via cross-
fitting.

• Cross-PPI uses labeled data more effi-
ciently and improves stability.

• Cross-PPI’s ensemble predictions often
enhance accuracy for unlabeled data.

Both estimators remain unbiased and more
efficient than classical approaches when N ≫ n
and predictions are reliable.

3.5 Imputation Models

We use RandomForestRegressor from scikit-
learn as our primary imputer—an ensemble
method that reduces variance. We contrast
this with a one-level decision tree ("stump"),
which is highly interpretable but less accurate,
to highlight the impact of model quality on PPI
interval width.

4 Background of Study
Datasets

This study relies on two benchmark datasets
that differ in domain, scale, and data-
generating process. The contrast be-
tween a controlled oenological laboratory

study and a large-scale socio-economic
survey allows us to test methodologies
across both small/clean/regression and
large/noisy/classification settings.

4.1 Red Wine Quality(UCI Machine
Learning Repository)

The Red Wine Quality dataset was first re-
leased by Cortez et al. (4) and is hosted at the
UCI Machine Learning Repository (5). It con-
tains n = 1,599 observations, each describing a
distinct Portuguese Vinho Verde red wine sam-
ple. For every sample, eleven physicochemical
predictors are provided:

Variable Description

fixed_acidity g tartaric acid / dm3

volatile_acidity g acetic acid / dm3

citric_acid g / dm3

residual_sugar g / dm3

chlorides g NaCl / dm3

free_sulfur_dioxide mg / dm3

total_sulfur_dioxide mg / dm3

density g / cm3

pH dimensionless
sulphates g K2SO4 / dm3

alcohol % (v/v)

The target variable, quality, is an ordinal
sensory score ranging from 0 to 10 assigned
by expert tasters. Because quality is integer-
valued and roughly bell-shaped (mean ≈ 5.64,
SD ≈ 0.81), most studies frame the task as re-
gression on the raw score. Key characteristics
for our analysis:

• Clean, nearly complete data: there
are no missing entries; preprocessing is
limited to scaling/standardisation.

• Small sample size: with fewer than
2,000 rows, the dataset is well-suited for
Monte-Carlo resampling and exhaustive
cross-validation.

• Low-noise laboratory measurements:
predictors are quantitative and collected
under controlled conditions, making the
data a prototypical example of a low-
variance, tabular regression task.
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4.2 Census Income Dataset

The Census Income dataset was extracted from
the 1994 U.S. Census Bureau’s Current Pop-
ulation Survey (CPS) and subsequently pre-
processed for machine-learning applications by
Kohavi and Becker (6). It comprises n =
48,842 individuals, each characterized by four-
teen demographic and employment variables,
including: age, workclass, education, marital
status, occupation, relationship, race, sex, cap-
ital gain, capital loss, hours per week, native
country. The predictive task is a binary classi-
fication problem: determining whether an in-
dividual’s annual income exceeds $50,000. In
this sample, approximately 24% of entries fall
into the “>50K” category, yielding a moderate
class imbalance.

Distinctive features:

• Heterogeneous attribute types: a mix
of continuous (e.g. age, hours-per-week)
and categorical variables with up to six-
teen levels.

• Real-world noise and missingness:
“?” marks missing entries in workclass,
occupation, and native-country.
Roughly 7% of rows contain at least one
missing value.

• Large-scale survey: compared with the
wine data, the Adult dataset is two or-
ders of magnitude larger and reflects un-
controlled, population-level sampling.

• Ethical considerations: because the
data encode sensitive attributes (race, sex,
nationality), modelling must account for
potential fairness and bias issues.

4.3 Why These Two?

Analysing both datasets side-by-side tests in-
ference under contrasting conditions:

Table 1: Comparison of Wine Quality and Cen-
sus Income datasets

Characteristic Wine Quality Census Income
Domain Chemistry / Sensory Socio-economic
Task Regression (ordinal) Binary classification
n 1.6 × 103 4.9 × 104

p 11 14 (mixed)
Missingness None ∼ 7% (MAR/MNAR)
Class imbalance — 24 % positive
Ethical risks Low Medium (fairness, privacy)

This diversity allows us to benchmark our
prediction-powered inference methods on both
small-sample, low-noise data and large-sample,
messy real-world data.

5 Methods

5.1 Gold-Standard Approach

In the ideal scenario where all data points are
labeled, one can construct classical confidence
intervals using standard statistical methods. In
other words, in this context, our gold-standard
estimators have access to all labels.

5.2 Classical Confidence Intervals
for the Sample Mean

A classical example of interval estimation is
for the population mean. The method for
constructing a confidence interval for a sam-
ple mean (especially with unknown variance
and small sample sizes) was introduced by
William S. Gosset under the pseudonym “Stu-
dent” (12). In his Biometrika paper, he derived
the Student’s t-distribution and established the
textbook formula for a confidence interval on
the mean of a normal distribution based on a
finite sample. In this context, this gives us the
labels-only mean.

5.3 Naïve Semi-Supervised Confi-
dence Intervals (Treating Pre-
dictions as Truth)

In semi-supervised settings, where a dataset
includes a small portion of labeled examples
and a large portion of unlabeled examples,
a straightforward but naive approach is to
use a predictive model to label the unlabeled
data and then treat those predicted values as
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if they were true outcomes when construct-
ing a confidence interval. This approach ig-
nores the model’s prediction error and typi-
cally produces intervals with a biased centers
and under-estimated standard errors, or inter-
vals that are overly narrow and do not achieve
nominal coverage. For a rigorous analysis of
why this “plug-in” strategy fails and how to
correct it, see Zhang et al. (14).

5.4 Prediction-Powered Inference
(PPI)

With PPI, it becomes possible to use model
predictions to improve the power of statisti-
cal inference while maintaining validity. An-
gelopoulos et al. (1) formally presented this
approach in “Prediction-Powered Inference,”
showing how a small labeled dataset together
with a large set of unlabeled examples (aug-
mented with model predictions) can yield valid
confidence intervals that shrink as the model’s
accuracy improves. This method makes no
assumptions about the predictive model and
guarantees nominal coverage by adjusting for
prediction error.

5.5 Cross-Prediction-Powered Infer-
ence (Cross-PPI)

Cross-Prediction-Powered Inference adapts the
original PPI idea by using a simple cross-
validation (or sample-splitting) scheme. Stan-
dard PPI assumes you already have a pre-
trained predictor, which is often trained on a
separate dataset. If you need to train your
model on your current labeled set, then two
subsets- one for training the predictor, another
for estimating the rectifier- is required. Cross-
PPI avoids this inefficient split by using cross-
fitting: every labeled example is used for both
training (in K-1 folds) and bias estimation (in
its own fold). This leads to higher statistical
efficiency, or tighter intervals with more sta-
ble estimates. Cross-PPI averaging over many
splits and therefore reducing variability is par-
ticularly valuable in contexts where labeled
datasets are small and the prediction model is
imperfect (16).

5.6 Evaluation Procedure of Red
Wine Dataset

Experimental set-up. Let Y denote the
1 599 integer-valued quality scores and X ∈
R1 599×11 the corresponding physicochemical
covariates of the Wine Quality – Red data(5).
We regard the full dataset as the population
and fix the true mean θ∗ = 1

1 599
∑1 599

i=1 Yi

for subsequent coverage checks. To emu-
late scarce “gold-standard” labels, the index
set {1, . . . , 1 599} is randomly permuted and
split into a labelled portion Ln of size n ∈
{200, 400, 800} and an unlabelled portion Un

of size N = 1 599 − n. All experiments are re-
peated independently T = 100 times for each
n.

Predictive model. Throughout, the re-
gression function f( · ) is taken to be a random-
forest regressor with 100 trees and default
scikit-learn hyper-parameters. For Cross-
PPI we further impose a three-fold (non-
overlapping) partition of Ln and fit fold-
specific forests f (1), f (2), f (3).

Estimators compared. Five methods are
evaluated: (i) a “gold-standard” estimator that
has access to all labels; (ii) the classical labels-
only mean; (iii) a naïve semi-supervised mean
that treats forest predictions on Un as ground
truth; (iv) in-sample PPI, which corrects the
naïve mean by the in-sample residual average
on Ln; and (v) Cross-PPI, which instead uses
out-of-sample residuals obtained via the three-
fold cross-validation scheme.

Confidence-interval construction. For
each replicate and each estimator θ̂ we form
a two-sided confidence interval

[
θ̂ − h, θ̂ + h

]
with nominal coverage 90% (α = 0.10), where
h = 1.645 ŜE(θ̂). The PPI standard-error for-
mulas follow the variance decompositions in
Angelopoulos et al (1).

Performance metrics. Our evaluation
approach differs between the two datasets.
For the Wine Quality dataset, which contains
no missing values, we compare our methods
against a gold standard derived from the com-
plete dataset. For every (n, t) pair, we record
the interval width w = 2h and assess how
closely PPI and Cross-PPI intervals align with
gold standard intervals. This serves as a sanity
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check, ensuring our methods produce results
similar to what would be obtained with fully
labeled data.

By aggregating across T = 100 replicates, we
calculate the mean width w(n) = 1

T

∑T
t=1 wn,t

for each method and compare these against
the gold standard width. This demonstrates
whether PPI methods can achieve precision
comparable to the gold standard while using
substantially fewer labeled examples.

For the Census Income dataset, which con-
tains approximately 7% missing values, we can-
not establish a reliable gold standard for com-
parison. Instead, we focus solely on comparing
the relative performance of different methods
in terms of interval width and stability across
replicates, without making claims about cover-
age of a true parameter.

Coverage Definition. Our evaluation relies
on the concept of coverage, which refers to how
often a confidence interval contains a fixed ref-
erence value θ∗ across repeated trials. For each
method and sample size, we compute empirical
coverage as

Ĉ(n) = 1
T

T∑
t=1

In,t,

where In,t is an indicator for whether the confi-
dence interval in trial t (with n labeled points)
contains θ∗, and T = 100 is the number of
Monte Carlo replicates.

For the Wine Quality dataset, which con-
tains no missing values, we define our reference
value as

θ∗ = 1
1, 599

1,599∑
i=1

Yi ≈ 5.636,

the average wine quality score across the full
dataset. While this is not necessarily the true
population mean, it serves as a fixed bench-
mark for assessing interval coverage within this
dataset.

In contrast, we do not report coverage for the
Census Income dataset. Because roughly 7%
of its rows have missing entries and the mech-
anism behind this missingness is unknown,
we cannot reliably define a “true” value for
the population proportion earning above $50K.
Any value calculated from the observed data

could be biased due to non-random missing-
ness. Without a valid reference point, cover-
age cannot be meaningfully assessed. Instead,
we evaluate interval width and trends in per-
formance qualitatively.

This approach allows us to compare meth-
ods in settings with and without missing data.
High empirical coverage (close to the nominal
90%) indicates reliable inference, while under-
coverage suggests intervals that are too narrow
and fail to reflect uncertainty properly.

5.7 Simulation

Simulation is not our primary preoccuption in
this paper. However, by simulating data, we
evaluate the benefits of the proposed PPI and
Cross-PPI frameworks when true parameters,
such as a mean or regression coefficient, are
known. This supplements our investigations
of PPI and its performance when applied to
analyses of medium-sized, real-world datasets.
As in previous sections, we compare the per-
formance of PPI estimates and the confidence
intervals with labeled-only results and imputed
results.

Design. Our code generates synthetic data
with known parameters (true mean µ = 5, re-
gression coefficient β1 = 2), then compares the
following four estimators:

1. Labeled-only (standard supervised esti-
mation)

2. Naive imputation (treating ML predic-
tions as observed outcomes)

3. PPI (bias-corrected using in-sample resid-
uals)

4. Cross-PPI (bias-corrected using out-of-
sample CV residuals)

This is done using two models of differing
complexity and two datasets described previ-
ously:

• A small labeled dataset (n=50) and large
unlabeled dataset (N=800)

• Two ML models: random forests (RF) and
shallow decision trees (max depth =2)
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Example: Mean Estimators. Using
standard PPI, for the mean, we use:

µ̂PPI = 1
N

N∑
j=1

f(Xj)
︸ ︷︷ ︸

Imputation

+ 1
n

n∑
i=1

(Yi − f(Xi))︸ ︷︷ ︸
Rectifier

(7)

Next, using weighed least squares on the la-
beled and unlabeled datasets with weights 1/n
and 1/N respectively, we use out of sample pre-
dictions from K-fold CV to build:

µ̂Cross-PPI = 1
N

N∑
j=1

f(Xj)+ 1
n

n∑
i=1

(Yi−fCV(Xi))

(8)
Implementation. The code achieves three

main objectives. First, it generates data from
the linear model:

Y = 5 + 2X1 + X2 + X3 + ϵ, ϵ ∼ N(0, 1) (9)

with covariates X N(0, I3).
Then, to train our models, we

• Fit RF and shallow trees to labeled data

• Compute normal and CV predictions

• Implement both standard and cross-
validated PPI

We then calculated point estimates and 95
percent confidence intervals for the true mean
(detailed prior) and the first regression coeffi-
cient, using robust standard errors.

6 Results

6.1 Red Wine Results

Figure 1b shows that, with the random-forest
imputer, all methods achieve empirical cover-
age very close to the nominal 90 % (panel a)
and produce relatively narrow intervals (panel
b). By contrast, when a one-level tree is
used, coverage falls below 0.90—especially at
n = 200—and average CI widths increase sub-
stantially. The grouped-interval plots in Fig-
ure 2 and the bar charts at n = 800 in Figure
3 further illustrate that downgrading to a shal-
low tree roughly doubles the width of PPI and
Cross-PPI intervals, pulling them nearer to the
classical labels-only benchmark.

6.2 Census Results

As shown in Figure 4 (panels a and b), average
CI widths for both PPI and Cross-PPI decrease
with increasing label budget n, but this con-
traction is substantially slower when using the
one-level tree compared to the random-forest
imputer. At the largest budget (n = 800), Fig-
ure 5 confirms that the shallow tree pushes PPI
and Cross-PPI widths much closer to the clas-
sical benchmark. Finally, Figure 6 contrasts
all 100 replicate intervals side–by–side: under
the weaker imputer, intervals not only become
longer on average but also show greater dis-
persion, underscoring how inference precision
hinges on imputer quality.

6.3 Simulation Results

The following visualizations depict both the es-
timates and the widths of the associated inter-
vals using each of the itemized methods de-
scribed in the Methods section:

(a) Estimates and intervals for the mean (=5).

(b) Estimates and intervals for the first regression
coefficient (=2).

Figure 7: PPI frameworks display increases
in efficiency compared to labeled-only ap-
proaches, and appropriate handling of error
compared to naive imputation approaches.
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variance is understated and they should not be
used for inference.
Practical Implications. Our study sug-
gests several useful insights for statistical anal-
ysis. First, when few labels are available,
prediction-powered inference methods produce
narrower confidence intervals than classical
analysis, especially when using random for-
est models rather than simple decision trees.
Second, although the naïve plug-in intervals
are the narrowest, our experiments indicate
that they tend to fall short of the nominal 90
% coverage, making them less dependable for
inference. Our results show that prediction-
powered inference responds well to model qual-
ity: with random forests, it produces inter-
vals almost as narrow as those from fully la-
beled data, while with simpler decision stumps,
it produces wider intervals closer to classical
methods—without needing strong assumptions
about why data are missing.

Based on our Monte Carlo simulations and
real-data evaluations, we suggest the follow-
ing for researchers with limited labeled data.
When very few labels are available (n < 0.05N),
Cross-PPI provides a good balance between
achieving close to 90% coverage and maintain-
ing reasonably narrow intervals. With more
labeled data (0.1N < n < 0.2N), Cross-PPI
continues to perform well, offering narrower
intervals than classical methods. We caution
against using the standard PPI method, which
can suffer from data leakage. Researchers
should avoid using the naïve approach despite
its seemingly narrow intervals—our coverage
analysis shows it consistently falls below the
target 90% rate. The most noticeable improve-
ments in interval width occur when there are
many unlabeled observations and the predic-
tion model performs well, making these meth-
ods particularly helpful when gathering labeled
data is costly but feature data is readily avail-
able.
Limitations and Future Work We have a
couple limitations to mention as followed. We
used random forest models with default param-
eters; other predictive models might further
improve PPI performance. We also focused on
simple estimands (means and proportions); ex-
tending to other parameters like quantiles or
regression coefficients β∗ would be valuable fu-

ture work.
Finally, PPI methods assume the labeled

data {(Xi, Yi)}i∈Ln represents the same popu-
lation as the unlabeled data {Xi}i∈Un . Devel-
oping diagnostics to detect when this assump-
tion fails would be helpful and interesting for
researchers.

8 Conclusion

This study shows that PPI and Cross-PPI can
deliver tighter confidence intervals than classi-
cal complete-case analysis while still acknowl-
edging prediction error. When we intention-
ally weaken the imputer to a single-split stump,
the intervals widen toward the classical bench-
mark yet remain shorter, confirming that even
modest predictive signal is worth exploiting.
Naïve plug-in intervals, though visually small-
est, miss the nominal coverage far too often
and are therefore unsafe for inference.

In sum, Prediction Powered Inference lets
statisticians reach valid conclusions without re-
stricting them to inefficient methodologies. It
bridges the gap between traditional inference
and modern machine learning by providing a
way to exploit predictive information without
sacrificing statistical rigor. As machine learn-
ing continues to grow and permeate the process
of scientific inquiry, methods like PPI will be
increasingly essential for ensuring that infer-
ences drawn from predictions are trustworthy,
reproducible, and valid.

PPI empowers statistical strategy by provid-
ing a way to reduce variance, control bias, and
tighten confidence intervals around valid, con-
sistent estimates. This is a departure from
labeled-only inference or direct imputation,
where unlabeled data is ignored or bias is un-
controlled respectively. In practical implemen-
tations of PPI, different choices of ML mod-
els will still yield valid results. More complex
models, such as random forests, usually lead to
better predictions.

Our contributions explore the application of
PPI in the absence of large AI models, predic-
tions, and datasets. When labels are limited
or expensive, and when data is moderately-
sized, our results demonstrate that the ad-
vantages of PPI still hold. To summarize,
we found that our PPI intervals were nar-
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