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ABSTRACT 

Dams have been crucial for centuries, serving as vital infrastructure for managing water 
resources across various sectors. As populations grow, the demand for dams increases, but the 
potential consequences of dam failures are often overlooked. Many dams are not properly 
maintained, leading to significant risks to society. In the simulated country of Tarrodan, our 
case study aims to develop a comprehensive national insurance program that accounts for the 
financial losses of key stakeholders. Using statistical modeling techniques, including 
hypothesis testing, decision tree regression, the random forest, the frequency and severity 
model, and time series analysis, we assess key factors contributing to dam failures and 
determine the optimal government inspection strategies to reduce risks. We propose an 
insurance framework that strengthens financial resilience while also providing insights into 
risk management policies and government supervision strategies to prevent large-scale dam 
failures in Tarrodan. 

 

INTRODUCTION 

Dam failures have historically led to severe financial losses and environmental devastation, 
yet many nations, particularly developing economies, lack adequate risk management 
strategies. Without proper maintenance, inspections, and financial safety nets, dam failures 
can result in widespread economic and human losses. Despite the importance of dam 
infrastructure, existing insurance frameworks often fail to account for large-scale liabilities, 
leaving governments and stakeholders financially vulnerable. 

Tarrodan, a simulated nation spanning 2 million square kilometers with a population of 95 
million, is heavily dependent on its 20,806 earthen dams for irrigation, hydroelectric power, 
and trade. The country consists of three main regions—Flumevale, Lyndrassia, and 
Navaldia—each with distinct geographical and economic characteristics. Flumevale, the 
agricultural center, relies on rivers for irrigation and transportation. Lyndrassia, with its 
mountainous terrain, utilizes dam systems for hydroelectric power. Meanwhile, Navaldia’s 
coastal position makes it an economic hub for maritime trade. 

Despite the crucial role of dams in Tarrodan’s economy, inadequate maintenance and 
inspection protocols increase the risk of failure. Currently, the country lacks a comprehensive 
insurance program to mitigate financial damages from dam-related disasters. 
Stakeholders—including local communities, businesses, and the government—face potential 
losses in property, revenue, and infrastructure without any structured relief mechanism. To 
mitigate the risk, the insurance program seeks to cover expected costs to help dam owners to 
relieve from catastrophic losses.  
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DATA OVERVIEW 

The data used in this analysis is sourced from the Society of Actuaries’ official website. Two 
main datasets are used for the study: the Dam dataset and the historical inflation dataset. The 
Dam dataset provides detailed information on 20,806 individual dams across three different 
regions in Tarrodan—Flumevale, Lyndrasia, and Navaldia. Table 1 summarizes the 
description of each explanatory variable in the Dam dataset. 

To ensure statistical robustness, we conducted a power analysis using Cohen’s f test with an 
estimated effect size of 0.11. Given the large sample size and an average of approximately 
6,935 observations per region, the power was calculated to be greater than 0.9. This high 
level of statistical power reduces the risk of Type II errors and supports the reliability of our 
inferential findings. 

 

Table 1: Explanatory Variable Descriptions in the Dam Dataset 

Each dam in the dataset is uniquely identified and described by 23 variables, including 
physical characteristics, functional purposes, and risk indicators. Regionally, Navaldia, being 
a coastal area, has the most dams (8,878), followed by the mountainous region of Lyndrasia 
with 8,406, and the agricultural region of Flumevale with 3,522. The purpose of dams varies 
by region: most dams in Flumevale are used for irrigation and agricultural water supply, those 
in Navaldia serve mainly for flood control and recreational purposes, while dams in 
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Lyndrasia are primarily used as fish and wildlife ponds. About 94% of the dams are classified 
as Earth Type Dams, with the remainder including concrete, gravity, and stone types. 
Size-related attributes such as height, length, volume, surface area, drainage area, and 
spillway type are included, giving a comprehensive picture of each dam’s structure and 
coverage. 

In addition to structural details, the dataset contains historical information about dam 
completion, modification, inspection, and assessment, spanning from 1948 to 2023. This 
information can be used to explore how government supervision—such as inspection 
frequency and attention to older dams—relates to dam performance and risk. However, these 
variables suffer from inconsistencies and missing values, which limits the depth of analysis 
possible in this area. 

Our main actuarial interest lies in evaluating the risk of dam failure and its financial impact. 
The dataset provides the 10-year probability of failure for each dam, along with estimated 
losses in three categories: repair and maintenance, third-party damage, and business 
interruption. For the purpose of premium pricing, we aggregate these three losses into a total 
estimated cost per failure event. Since we are interested in calculating annual insurance 
premiums, we convert the 10-year failure probabilities into annual failure probabilities using 
the assumption of independence and constant failure rate. The conversion formula is: 

  

which  represents the annual probability of failure and  represents the 10-year period 
probability of failure. These annual probabilities, along with the total loss amounts, form the 
basis for assessing risk levels, pricing premiums, and calculating the net present value (NPV) 
of insurance benefits for dam failure events. 

The dataset also includes government ratings and hazard assessments for each dam. These are 
categorized as: 

●​ Hazard levels: Low, Significant, and High 
●​ Assessment ratings: Poor to Satisfactory 

These ratings, together with the physical and historical variables, will be used in the 
underwriting process to help determine eligibility for inclusion in a national insurance 
program. To support this, classification models such as random forests and decision trees will 
be employed. Average failure probabilities by region are summarized in Table 2, which will 
be referenced in our discussion on risk reduction strategies. 

Region Measures Value 
Flumevale Average Annual Probability of Failure 0.009159 
Navaldia Average Annual Probability of Failure 0.010005 
Lyndrassia Average Annual Probability of Failure 0.009976 

Table 2: Average Annual Probability of Failure for each Region 

Finally, the historical inflation dataset contains annual inflation rates from 1962 to 2024. This 
data is essential for adjusting projected costs and insurance premiums, allowing us to reflect 
long-term economic trends and improve the financial accuracy of our models. 
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OBJECTIVES 

This study aims to develop a national insurance framework that protects all stakeholders in 
Tarrodan—including the government, dam owners, and residents—from financial losses due 
to dam failures. Our goals focus on three main areas: risk prevention, risk mitigation and 
minimization, and financial feasibility. To achieve this, we address the following research 
questions: 

1.​ What common characteristics of dams significantly impact the probability of failure? 
2.​ What is the optimal national insurance policy to cover the total annual expected loss 

of dam failures in each region? 
3.​ How effective is government supervision in reducing the annual probability of dam 

failure, and are there specific regions that require more attention or oversight? 

To explore these questions, we analyze key perspectives from the dataset as in the following: 

●​ Key dam characteristics (e.g., construction year, spillway type, hazard classification). 
●​ Probability Distribution of Failure and Expected financial losses over one-year period 

in terms of third-party liability, maintenance, and business interruptions. 
●​ The optimal frequency of government inspections to minimize failure risks. 
●​ Socioeconomic factors ( inflation) to assess financial feasibility. 

In terms of risk prevention, we focus on identifying the dam characteristics that most strongly 
influence the likelihood of failure—such as older construction, location, or hazard level. 
Based on these findings, we propose guidelines and regulations that require dam owners to 
perform regular maintenance or request inspections if their dams fall within high-risk 
categories. Failure to comply with these standards may result in penalties. Furthermore, we 
examine how inspection frequency can be tailored to dam characteristics for a cost-effective 
approach. By keeping dam structures in good condition through timely inspections, we aim to 
reduce the probability of failure without relying heavily on financial compensation for losses. 

For risk mitigation and minimization, we introduce an annual insurance model for eligible 
dam owners (detailed in Results Section). Using an underwriting process, we propose a 
pricing structure—either uniform or region-specific—based on the distribution of annual 
failure probabilities and total expected losses. We will fit a parametric model to estimate 
short-term premium payments and ensure they align with actual risk levels. Additionally, we 
consider long-term financial stability by analyzing historical inflation data and interest rate 
trends. This helps ensure that the insurance program remains sustainable and capable of 
covering increased costs due to economic fluctuations. 
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METHODS 
Our primary goal is to identify the key factors that significantly impact the probability of dam 
failure within the next 10 years. From our initial analysis, we observed a positive relationship 
between hazard level and failure probability (see Appendix A). To dig deeper into this 
relationship, we applied a random forest regression model to determine which variables have 
the strongest influence on failure probability. Variable importance was measured using 
IncNodePurity (Mean Decrease in Gini). In building the random forest, we removed missing 
data and grew 500 trees to ensure accuracy and consistency in the results. 

After identifying important predictors, we used a decision tree model to visualize how these 
variables contribute to failure risk. Unlike the random forest, this model can handle missing 
values directly. We also applied cross-validation to avoid overfitting. The data was split into 
70% for training and 30% for testing. Both pruned and unpruned trees were compared to 
determine the model with the best predictive performance. 

Besides identifying key variables, we also analyzed the probability distribution of dam failure 
across regions and overall. With a large sample size in each region, we relied on the Central 
Limit Theorem and assumed a normal distribution for failure probabilities. To support this 
assumption, we ran diagnostic checks for normality. Using this underlying distribution, we 
performed hypothesis testing to evaluate whether the probability of failure differs across the 
three regions: Flumevale, Lyndrassia, and Navaldia. Specifically, we conducted ANOVA tests 
to assess differences in both the mean and variance across regions. This analysis helps us 
determine whether regional factors should influence premium pricing. 

For the financial component, we turned to time series analysis to forecast key economic 
indicators like inflation. Since no seasonal trend was observed, we excluded seasonal 
components from our model. Instead, we built ARIMA models and selected the best one 
based on information criteria (like AIC/BIC). These forecasts allow us to estimate future cash 
flows and calculate the necessary reserve to cover potential dam failure losses. 

Finally, to estimate the total annual expected loss from dam failures, we developed separate 
frequency and severity models. After identifying suitable distributions for both, we conducted 
a Monte Carlo Simulation to model a wide range of possible outcomes. This simulation also 
allowed us to estimate worst-case scenarios at the 95th percentile confidence level, giving us 
a more robust view of financial risk. 

 

 

Table 3: Overview of Methodological Approach 
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RESULTS 

Decision Tree & Random Forest Regression 

 

Figure 1: Random Forest Variance Importance Plot on Probability of Failure 

The Random Forest Regression in Figure 1 analysis indicates that hazard level, inspection 
frequency, and assessment rating are the three most significant factors influencing the annual 
probability of failure. To further support these findings, we examine the results from the 
decision tree model. We ran two decision tree models: one with pruning and one without 
pruning. As shown in the (Appendix B), the pruned tree resulted in a higher Residual Mean 
Deviance and a higher test error rate. Therefore, we opted to use the unpruned tree model for 
our analysis. 

The decision tree in Figure 2 confirms that the results align with expectations. Specifically: 

●​ Dams with low hazard levels and an assessment of "Satisfactory" have the lowest 
probability of failure among all classifications. 

●​ Dams classified as significant hazard with an assessment of "Not Satisfactory" exhibit 
the highest probability of failure. 

●​ High-hazard dams that are either "Not Rated" or assessed as "Unsatisfactory" have the 
second highest probability of failure. 

●​ Dams with lower inspection frequency generally have a higher probability of failure 
than those inspected more frequently. 

Overall, the decision tree results align with our initial classification assumptions, reinforcing 
the validity of our model's findings. We will incorporate this classification into our program 
design and pricing structure to ensure accurate risk assessment and financial planning. 
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Figure 2: Decision Tree Plot (Unpruned) 

The goal is to include all dams in the program while minimizing risk as much as possible. 
Although the hazard level of a dam cannot be changed, the assessment rating can be 
improved—therefore, dams with higher hazard levels will be required to meet stronger 
assessment standards. To meet underwriting criteria, we filtered the data based on specific 
requirements—for instance, only including dams with a Low Hazard with an Assessment of 
Not Rated, Fair, or Satisfactory, High hazard level with an Assessment rating of Fair or 
Satisfactory, and Significant hazard level with an Assessment rating of Satisfactory. This 
criteria decreases the probability of failure as shown in Table 3. According to Table 3, both 
Flumevale and Navaldia exhibit high acceptance rates. In contrast, Lyndrassia shows a 
significantly lower acceptance rate, indicating that dams in this region may require additional 
inspections to meet the required standards.  

 

 

 

 

 

Table 4: Summary of the Filter Criterion 

Hypothesis Testing 

We begin by analyzing the probability distribution of dam failure across different regions and 
hazard levels. According to the Figure 3, there’s clearly a different shape in distribution 
across all regions. While the distributions generally approximate a normal distribution, some 
exhibit slight skewness due to the limited sample size in some categories. Nevertheless, after 
plotting the overall normal distribution for the probability of failure, we find that it aligns 
reasonably well with expectations, due to the Central Limit Theorem (Appendix I & C2).  
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Region Average 
Annual 
Probability 
of Failure 

Eligible 
Dams 

Non-Eligible 
Dams 

Enrollment 
Rate 

Flumevale 0.00852 2,958 564 84% 
Lyndrassia 0.00925 4,437 3,969 53% 
Navaldia 0.00940 7,082 1,796 80% 



Additionally, we plot Q-Q plots for the annual probability of failure across each region, and 
the results indicate that all distributions follow a normal pattern (Appendix C1). These 
visualizations further support the assumption that the failure probabilities are normally 
distributed across the different regions. 

 
Figure 3: Density Plot of Annual Failure Probabilities by Region 

To provide further evidence of regional differences, we conduct Hypothesis Testing to 
determine if there are significant variations in the underlying distributions across the regions. 
Specifically, we use the Tukey Honest Significant Difference (HSD) Test to do a pairwise 
comparison of the means across the three regions. 

Region Comparison Difference in Mean p-value 

Lyndrassia - Flumevale 0.00082 0.00000 

Navaldia - Flumevale 0.00084 0.00000 

Navaldia - Lyndrassia 0.00003 0.82220 

Table 5: Tukey HSD Test Comparisons of Means Across Region 

From Table 4, we see that the p-value for the comparison between Navaldia and Lyndrassia is 
greater than 0.05 (p-value = 0.82220), which suggests that there is no significant difference in 
the means between these two regions. Therefore, we fail to reject the null hypothesis (Ho), 
indicating that the means for these two regions are statistically similar. However, for the other 
region comparisons (Lyndrassia - Flumevale and Navaldia - Flumevale), the p-values are less 
than 0.05, suggesting significant differences in their means. 

Region Comparison Estimated Variance Ratio  95% Confidence 
Interval 

p-value 

Lyndrassia - 
Flumevale 

1.436 (1.359,1.519) 0.000 

Navaldia - Flumevale 1.335 (1.264,1.411) 0.000 
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Navaldia - Lyndrassia 0.930 (0.891,0.970) 0.001 

Table 6: F Test Comparisons of Variance Across Region 

To examine whether there are differences in variance across the regions, we apply both the 
Levene’s Test and the F-test. Levene’s Test, shown in the Appendix J), indicates that there is 
at least one group with a significantly different variance, with a p-value less than 0.05. 
Further, the F-test results presented in Table 5 confirm that the variances across the regions 
differ significantly, all p-values are less than 0.05. Thus, we can reject the null hypothesis 
(Ho) that the variances are equal across the regions. 

Based on the results of the Tukey HSD test and F-test, we conclude that there are significant 
differences in both the mean and variance of dam failure probabilities across the regions. This 
suggests that the probability distribution varies by region, and we should consider these 
differences when setting premiums or designing region-specific interventions. 

Time Series Analysis - Inflation 

The goal of this project is to establish an equitable premium structure across all regions while 
maintaining sufficient reserves for unforeseen future expenses. The pricing of premiums for 
the national dam insurance program is designed to balance affordability and financial 
sustainability. However, the inflation is crucial when determining the premium for each year. 
Thus, we created the ARIMA model to help us forecast inflation for the future. We first 
assessed whether the time series data is stationary by performing the Dickey-Fuller test. The 
results showed that taking one or two differences made the data stationary, with a p-value less 
than 0.05. To determine the optimal time series model, we examined the autocorrelation 
(ACF) and partial autocorrelation (PACF) plots. The ACF cut off at lag 8, and the PACF cut 
off at lag 2, which indicated the appropriate model structure. Based on these plots, we 
selected the model with the lowest AIC. We also investigated whether taking two differences 
improved model performance, and found that the ARIMA(2,2,1) model yielded the lowest 
AIC. After analyzing the ACF and PACF plots, we identified the top two candidate models 
for further evaluation. 
 
 
 

 

 

Table 7: Inflation Forecast ARIMA(2,2,1) 

Based on this Table 6, ARIMA(2,2,1) is a better model since it has a lower AIC and BIC. 
(Even though, the ARIMA(8,1,2) model looks more pleasing according to Figure 5, but 
according to the Goodness-of-Fit, we will use ARIMA(2,2,1)). According to Figure 4, we 
can see that the forecasted inflation is around 4% each year. 
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Model                AIC  BIC 
ARIMA(2,2,1) -5.232754 -5.078320 
ARIMA(8,1,2) -5.121289 -4.700644    



 
Figure 4: Inflation Forecast ARIMA(2,2,1) 

 
 

 
Figure 5: Inflation Forecast ARIMA(8,1,2) 

Based on Figure 4, the projected inflation rate remains consistently between 4% and 5%, 
suggesting that costs are expected to rise by approximately 4% to 5% each year. 
Consequently, the premium structure must be designed to withstand and adapt to this steady 
inflation over time. In contrast, Figure 5 shows that projected inflation is much more volatile, 
ranging from approximately 2% to 10%. Initially, inflation is expected to rise, then gradually 
converge toward the 4% to 5% range. However, as shown in Table 7, the ARIMA(8,1,2) 
model performs worse than the ARIMA(2,2,1) model due to the volatility in its projections 
and the added complexity of the model. Therefore, a simpler and more interpretable model, 
such as the parsimonious ARIMA(2,2,1), is preferred for projecting inflation. Thus, 
ARIMA(2,2,1) model will be used to estimate the future cost (Figure 7).  

Expected Loss Calculation (Premium) - Frequency and Severity Model 

In an actuarial setting, it is common to combine frequency and severity to calculate the 
expected aggregate loss. Aggregate loss is found by multiplying the number of claims 
(frequency) by the cost per claim (severity). For example, if a claim costs $500 and occurs 3 
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times, the aggregate loss would be $1,500. For simplicity, we assume that frequency and 
severity are independent—meaning the number of claims does not influence the cost of each 
claim. Under this assumption, the total expected aggregate loss can be expressed as the 
product of the expected frequency and expected severity. Let  represent the number of 𝑁
claims (frequency),  the loss given a claim (severity), and  the total aggregate loss. 𝑋 𝑆

 

To ensure sufficient reserves are available to cover claims each year, we estimate the 
expected annual total loss and extreme cases using Frequency and Severity Modeling. This 
approach accounts for both typical losses and worst-case scenarios. The expected total loss 
from dam failures is calculated using frequency and severity modeling, where the total loss is 
determined by multiplying the number of claims per year (frequency) by the loss amount per 
claim (severity). After classifying the hazards based on their assessment ratings, we model 
the distributions of frequency and severity as follows.  

Given the probability of dam failure over a 10-year period, the annual failure probability is 
calculated, which represents the annual probability of failure. Note, the annual probability 
was calculated under the assumption that each year is independent of the others. To determine 
the best-fitting distribution for annual failure probabilities, we compared different statistical 
models using AIC, BIC, and Log-likelihood. The results are summarized in Table 7. 

Model                AIC  BIC Log-likelihood 
Normal -133,735.4 -133,720.2 66,869.7 
Log-Normal -131,226.4 -131,211.2    65,615.2 
Beta -132,545.5 -132,530.4    66,274.8 

Table 7: Frequency Model Goodness-of-Fit Evaluation 

 

The result suggested the annual failure probabilities follow a normal distribution since it has 
the lowest AIC and BIC, and it is supported by the Q-Q plot in (Appendix C2). 

We are provided with the severity data for each dam, which shows a right-skewed 
distribution, as shown in Appendix H. Therefore, we consider three right-skewed distributions 
for the severity: Log-Normal, Gamma, and Weibull. The performance of these models is 
summarized in Table 8. 

Model                AIC  BIC Log-likelihood 
Log-Normal 284,269.7 284,632.2 -142,312.8 
Gamma 282,971.3 282,973.8 -141,483.6 
Weibull 282,945.9 282,948.4 -141,471.0 

Table 8: Severity Model Goodness-of-Fit Evaluation 

Therefore, the most appropriate model for severity is the Weibull distribution. We will utilize 
the frequency and severity model to calculate the 95% confidence interval for the annual 
expected loss using Monte Carlo Simulation. 
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Monte-Carlo Simulation Methods 

The optimal model for the annual probability of failure follows a Normal distribution, while 
the loss distribution is best represented by a Weibull distribution. In a dataset, there is only 
one total expected loss, but we are interested in the range of total expected loss. Therefore, 
we will be performing Monte Carlo simulation to estimate the 95% confidence of total 
expected loss. The procedure of the simulation is as follow: 

1.​ Calculate the maximum likelihood estimates (MLE) of each parameter. For the annual 
probability of failure, estimate the parameters  and  assuming a Normal µ σ
Distribution. For the severity (loss given failure), estimate the parameters  and  α β
assuming a Weibull distribution. 

2.​ Generate N observations of the annual probability of failure from the Normal 
distribution using the estimated parameters, and generate corresponding loss given 
failure from the Weibull distribution using its estimated parameters. 

3.​ Sum the aggregate loss for each simulation, and repeat the process for S iterations.  

 𝑁 ~ 𝑁(µ,  σ)

 𝑋 ~𝑊𝑒𝑖(α, β)
The Monte Carlo simulation for the frequency and severity individually are shown in 
Appendix G. As shown in Figure 6 with S = 100,000 iterations, we are 95% confident that the 
annual total expected loss from the insurance coverage will fall between 39,406 million Q 
and 40,406 million Q. The 97.5th percentile gives us an idea on how well does premium 
structure tolerate the extreme case scenario.  

 

 

Figure 6: Monte Carlo Simulation of Total Annual Expected Cost 
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Financial Results 

We incorporated inflation to visualize the approximate cost for each year by region and 
hazard level. This allows us to identify which hazards are associated with the highest 
expected costs and what region requires extra supervision (Research Question 2). Based on 
Figure 7, we observe that Flumevale and Navaldia follow a similar trend, where high-hazard 
dams contribute the most to expected costs—especially since most dams in Tarrodan are 
classified as high hazard. Notably, Flumevale shows a higher expected cost for significant 
hazards, which makes sense given its proximity to a city, where dam failure could result in 
catastrophic losses. As a result, we recommend extra government supervision on the dam in 
the Flumevale region, and it’s important to reduce the Flumevale’s dam probability of failure 
as low as possible. We also see that Navaldia has the highest overall cost since Navaldia has 
the number of observations in the data. Lyndrassia, on the other hand, displays a unique trend 
where low-hazard dams contribute the highest cost. This is because Lyndrassia is a rural area, 
and the majority of its dams are classified as low hazard. Consequently, we expect Lyndrassia 
to contribute the smallest proportion of total costs over the years. 

  

Figure 7: Financial Projection 

Aggregate Statistical Model (Premium Prediction Model) 

In this section, we’ll explore what model is the best at predicting the expected total cost. In 
the claim data, the response variables are often right skewed as there are a lot of claims with 
no claims or a low cost. In the insurance field, Tweedie distribution is often used to model the 
claim to account for the data that has heavy weight at around 0. According to Figure 8, we 
can see that there's a lot of expected cost located around 0. In this section, we’ll explore the 
generalized linear model with a link function of Tweedie distribution.  
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Figure 8: Histogram of Annual Expected Cost 

The Tweedie distribution is a special case of an exponential distribution. It is useful when the 
data has a cluster at zero. The Tweedie distribution has the following characteristics: 

 𝐸[𝑌] =  µ

 𝑉𝑎𝑟[𝑌] =  ϕµ𝑝

The  is an additional shape parameter for the distribution and  is the dispersion parameter. 𝑝 ϕ
The value of  determine the shape of the distribution, and the details are provided in Table 9.  𝑝
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 = 0 𝑝
Normal Distribution 

 = 1 𝑝
Poisson Distribution 

1 <  < 2 𝑝
Compound 

Poisson/Gamma 
Distribution 

 = 2 𝑝
Gamma Distribution 

2 <  < 3 𝑝
Positive Stable 

Distribution 

 = 3 𝑝
Inverse Gaussian 

Distribution / Wald 



 

 

 

 

 

Table 9: Description of  value for Tweedie Distribution 𝑝

First, we estimated the optimal value of the power parameter p to determine the shape of the 
distribution. Using maximum likelihood estimation in R, we found the optimal p to be 
approximately 1.5, indicating that the data follows a Compound Poisson-Gamma distribution. 
Based on this, we retained the significant predictors in the model, and the results are 
presented in Table 10. 

 

 

 

 

 

 

 

 

 

   

Table 10: Generalized Linear Model with Tweedie Distribution Output 

Table 10 summarizes the results of a Tweedie generalized linear model analyzing factors 
associated with the annual expected cost. Several predictors show statistical significance, 
including region, dam regulation status, structural characteristics such as height and length, 
year completed, and hazard and assessment categories. Positive coefficients suggest that 
factors like greater dam length, unsatisfactory assessment ratings, and regulated status are 
associated with an increase in the annual expected cost. Negative coefficients indicate that 
being located farther from a city, lower hazard classifications, and certain region indicators 
are associated with a decrease. Some variables, such as the "poor" assessment rating, do not 
appear to have a significant effect. Overall, the model suggests that both physical 
characteristics and evaluation metrics of dams play a role in influencing the annual expected 
cost. For the model diagnostics, refer to Appendix L for further details. 
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Distribution 

 > 3 𝑝
Positive Stable 
Distributions 

 =  𝑝 ∞
Extreme Stable 
Distributions 

 Estimate P-Value 
(Intercept) -10.8512 0.0120 
RegionLyndrassia -0.1115 0.0018 
RegionNavaldia -0.4760 0.0000 
Regulated.DamYes -0.3652 0.0001 
Height..m. 0.0082 0.0000 
Length..km. 0.2609 0.0000 
Year.Completed -0.0021 0.0020 
Last.Inspection.Date 0.0088 0.0103 
Distance.to.Nearest.City..km. -0.0058 0.0000 
HazardLow -0.8098 0.0000 
HazardSignificant 0.2165 0.0002 
AssessmentNot Rated 0.1515 0.0412 
AssessmentPoor -0.0228 0.8374 
AssessmentSatisfactory -0.1374 0.0023 
AssessmentUnsatisfactory 0.4056 0.0000 



Next, we perform a diagnostic on generalized linear regression with Tweedie distribution. 
From Figure 9, we can see that the Tweedie distribution residual plot is clustered around the 
middle and the residuals are fairly uniformly distributed, which implies homoscedastic 
variance. This means that the model is fairly good at predicting high and low values.  

Lastly, we compared the model’s performance with ordinary linear regression and a 
generalized linear model using a Gamma distribution. Since linear regression assumes a 
normally distributed response, a log transformation was applied. However, as shown in Table 
11, the Tweedie model demonstrated the best predictive accuracy. Linear regression 
performed the worst, struggling with the many observations that had very low expected costs, 
even after transformation. The Gamma model performed better due to its ability to handle 
skewed data and some degree of zero inflation. The Tweedie model further improved on this 
by introducing a power parameter, making it particularly effective for modeling data that is 
both highly skewed and zero-inflated. As a result, we selected the Tweedie distribution to 
determine policyholder premiums. Note that this prediction result is only for the year 2025 
only, so it’s important to adjust the model to the new data to incorporate the increase in cost.  

Models MSE 
Linear Regression (log transformed) 73.9790 
Gamma 30.2537 
Tweedie 11.3894 

Table 11: Models Comparison 

 

DISCUSSION 

Based on our results, the underwriting process—specifically filtering dam eligibility based on 
hazard level and assessment rating—led to a notable reduction in the average annual 
probability of failure by region, decreasing by approximately 5–8%, as shown in Table 2 and 
Table 4. Enrollment rates were above 80% in most regions, except for Lyndrassia, which had 
only 53% enrollment. This lower rate is mainly due to a large number of dams lacking 
assessment ratings. To improve participation and ensure broader insurance coverage, we 
recommend that government agencies or related authorities prioritize inspection efforts in 
Lyndrassia. Increasing assessment coverage would expand eligibility for the program, thereby 
reducing public financial vulnerability in the event of a hazard. 

In our underwriting approach, we focused on two key classification variables: hazard level 
and assessment rating. These were identified as important predictors through a random forest 
model, which ranked them among the top variables based on reduced IncNodePurity. To 
support and validate this selection, we also fitted a generalized linear model (GLM). The 
GLM confirmed the statistical significance of both hazard level and assessment rating in 
predicting dam failure (see Appendix K), reinforcing our decision to use them as primary 
criteria. In this way, the GLM served to support the results from the random forest model, 
ensuring our underwriting choices were both data-driven and statistically sound. 

While other variables—such as dam height, year completed, and length—also showed high 
importance in the random forest model, we excluded them due to a large proportion of 
missing values that could compromise model accuracy. Similarly, although the GLM 
identified additional significant variables like region, dam purpose, surface area, inspection 
frequency, and assessment date, many of these had data quality issues or posed challenges for 
standardized pricing. For example, we chose not to include dam purpose because the dataset 
only listed the primary purpose, and many dams serve multiple functions. Creating an 
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equitable pricing structure for such cases would require deeper domain-specific research 
beyond our scope. 

From Appendix E, we observed that the average annual probability of failure decreases as 
inspection frequency increases, particularly when the frequency reaches three or more 
inspections. This insight underscores the importance of regular inspections in reducing dam 
failure risk, and it can be used to inform risk mitigation strategies, even though inspection 
frequency was not included in the underwriting criteria due to missing data. 

Hypothesis testing revealed that dam failure probabilities differ significantly across regions, 
prompting us to implement a region-specific premium structure. Under this structure, dams in 
different regions—even with the same classification—would pay different premiums. For 
instance, a dam in Lyndrassia would not pay the same premium as one in Navaldia, even if 
both have similar risk profiles. We built a frequency-severity model, treating the total 
estimated loss per event as the severity component and the annual probability of failure as the 
frequency. This allowed us to estimate the net present value of expected aggregate losses, 
which forms the basis for premium pricing. With a large applicant pool, the insurer can 
diversify risk and ensure liquidity over time. 

Because our insurance plan targets both short- and long-term coverage (e.g., 30-year plans), 
we required a predictive model that accounts for future changes in cost and risk. For this, we 
implemented a GLM with a Tweedie distribution, which outperformed both linear regression 
and a GLM with a Gamma distribution. This model is well-suited for skewed, zero-inflated 
data like ours and provided a robust framework for pricing future expected losses. It also 
enables dynamic pricing by incorporating inflation predictions. 

To support the long-term stability of the insurance program, it is essential for the government 
to maintain adequate reserve capital to cover projected losses, including under adverse 
scenarios, as illustrated in Figure 6. Diversifying investments of collected premiums can also 
help grow the fund and reduce the risk of financial shortfalls over time. 

Our use of a generalized linear model (GLM) with a Tweedie distribution provided a strong 
foundation for pricing, especially given the skewed and zero-inflated nature of the loss data. 
However, the model currently yields a mean squared error (MSE) of approximately 11 
million Q, indicating that further refinement is needed.  

We also aim to evaluate the robustness of our premium structure under various risk scenarios. 
In addition, we are considering strategies such as reinsurance, contingency reserves, and 
policy adjustments to strengthen the program’s ability to manage future uncertainty and 
maintain financial resilience. By aligning our underwriting criteria with both machine 
learning insights and statistical validation, we’ve built a framework that supports regionally 
tailored, risk-based pricing and contributes to a more sustainable and data-informed insurance 
program. 

DATA LIMITATIONS AND FUTURE CONSIDERATIONS 

This dataset contains a significant amount of missing data, especially for time-related 
variables such as year of completion, inspection dates, and assessment years. This makes it 
challenging to fully assess the reliability of our results, particularly for evaluating the impact 
of government intervention and building a strong financial model. For instance, our time 
series analysis on the year of dam completion proved unreliable due to sparse data before 
1900. This gap could affect our underwriting process, especially since we rely on assessment 
ratings that are time-sensitive. 
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A specific concern is the lack of recent assessment dates. For example, if a dam’s last 
assessment was in 1970 and it was rated as satisfactory at that time, that rating may no longer 
hold true in 2023 due to potential deterioration. Ignoring the timing of assessments introduces 
bias in the underwriting process, which is why we recommend that assessments be updated at 
least every five years. To address this data gap, our program design includes mandatory 
short-term inspections for all dam owners. This requirement not only improves the accuracy 
of the underwriting process but also ensures that decisions are based on current data rather 
than outdated assumptions. 

Another limitation is the dataset’s limited geographic detail. While it includes general 
regional information and the distance from the nearest city, it lacks precise spatial data or 
hazard mapping. This restricts our ability to design more tailored insurance models. For 
example, in the region of Lyndrassia, a dam located in a mountainous area may face higher 
pressure and risk than one located on flatter ground, and a dam situated in a densely 
populated city would likely cause more costly damage in the event of a failure. With more 
detailed spatial data, we could design better region-specific insurance plans. This is a key 
area for future research. 

We also lack environmental and climate data, such as rainfall patterns or natural disaster 
frequency. These factors are important because regions with heavier rainfall, for example, 
have a higher likelihood of flooding, which should be reflected in premium pricing. Without 
this information, we are unable to incorporate these potentially significant covariates into our 
model, which could impact the accuracy of both failure probability estimates and total loss 
projections. 

Furthermore, the dataset provides dam failure probabilities on a 10-year basis, but we apply 
them as if the annual probability is constant and independent from year to year. In reality, 
dam failure events are not independent—if a dam fails or shows signs of weakening, the risk 
of future issues is likely to increase. This means our assumption of consistent annual failure 
probability may not be realistic. To improve our model, we would need historical event data 
to better estimate annual probabilities and understand how risks evolve over time. 

Finally, our assumption that total losses remain constant each year is another simplification 
that may not hold true in practice. Urban development, population growth, or government 
relocation policies could all significantly change the financial impact of a dam failure over 
time. For example, an area that becomes more densely populated would lead to higher 
third-party losses, while a region undergoing relocation efforts might see reduced exposure. 
These dynamic factors should be considered to enhance the model’s realism and accuracy. 

In summary, while this dataset provides a foundation for our analysis, it lacks several key 
dimensions that would improve the model’s accuracy, including recent inspection data, 
precise geographic and climate information, and dynamic risk factors. These limitations 
should be addressed in future research to build a more robust, reliable, and actionable 
national insurance framework. 
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APPENDICES 
Appendix A: Annual Probability of Failure VS Hazard  

 
 
 
Appendix B: Decision Tree ( Pruned VS Unpruned) 
Appendix B1: Pruned Tree 
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Appendix B1: Pruned Tree with “Best=4” 

Appendix B2: Cross-Validation Between Pruned Tree and Unpruned Tree 
 

Decision Tree Residual Mean 
Deviance 

MAE 

Unpruned 0.0003961 0.0314 

Pruned 0.0007389 0.0321 
 
 
Appendix C: QQPlot for the Failure Probability Distribution 
Appendix C1: Q-Q Plot for Failure Probability Across Each Region 
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Appendix C2: Q-Q Plot for Failure Probability in All Region
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Appendix D: Hazard Level vs. Total Cost

 
 
Appendix E: Year Completed, Inspection Frequency, Last Inspection Year 
Against Annual Probability of Failure 
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Appendix F: GDP, Population, Total Cost, and Bond Projection
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Appendix G: Monte Carlo Simulation (Frequency) 

 

 
 
 
 
Appendix H: Fitted Distribution (Frequency and Severity) 
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Appendix I: Density Distribution of Annual Probability in All Regions 

 
Appendix J: Levene’s Test Result 
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Appendix K: Supporting Underwriting Decision from GLM model 
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Appendix L: Tweedie Model Diagnostics Plot 
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