
Exploring Capture Recapture Methods: From
Historical Origins to Modern Applications

Estimating the size of a population is often of utmost importance, and capture-
recapture methods are the standard approach to doing so. This paper explores
the history of capture-recapture methodology and delves into their effectiveness
in different scenarios. Different scenarios include varying sample sizes and sample
counts, as well as whether samples are independent or not. Derivations of the
formulas used to arrive at estimates are presented first, justifying their use. Then,
an exploration into different scenarios and the associated resulting estimator is
performed. Bootstrapping is also shown to be an effective way of estimating the
variance of such estimators, and is then used to compare variances across the
different scenarios. Current applications and work in the field are also briefly
discussed.
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Introduction

Accurately estimating the size of a population is a key goal in the field of statistics. One of
the most common methods of doing this is using capture-recapture methodology. The general
idea of capture-recapture is gathering multiple samples from the same population and using
information about the overlap to estimate the population’s size.

The first known use of capture-recapture methodology was by Pierre-Simon, Marquis de
Laplace (Seber and Schofield 2019) when Laplace used the method to attempt to estimate
the total population of France. While this seemed to be an incredibly daunting task when he
performed it in 1786, the use of this methodology allowed him to get an accurate estimate
without actually counting everyone in the population.

The first time this method was used for its most commonly known purpose was in 1917 when
Dahl (Cren 1965) used capture-recapture to estimate the size of a trout population in Norway.
Since then there have been hundreds of papers published applying this method to estimate
animal population sizes. There has been a large variety of work in this field, with papers
ranging from those using the classic methods to estimate salmon populations (Schwarz and
Dempson 1994), to using spatial capture-recapture data to estimate bear populations (Sun et
al. 2017).

However, a relatively recent development in the use of these methods is applying them to the
field of epidemiology (Seber and Schofield 2019). It is often the case that epidemiologists are
trying to estimate the number of people that have a certain disease. Obviously they can’t
just go around asking everyone in a certain area if they have the disease, for logistic and
budget reasons. As such, that makes capture-recapture the perfect method to apply to this
situation.

One of the most comprehensive papers detailing the application of this method in this setting
is provided by Chao et al. (2001). They highlight some of the initial formulations of capture-
recapture methods, as well as detailing some approaches that work even when complications
are present, such as dependence exists between the samples. These methods require much
more in terms of discussion of assumptions, and will not be discussed in this paper.

The goal of this paper is to give an expository review of some of the methods present in the
paper by Chao and colleagues mentioned above, as well as undertaking a simulation study to
evaluate the effectiveness of these methods in different situations.

In this paper there is a section devoted to the methods of capture-recapture in both a two
list and a three list setting, as well as the assumptions needed. The methods section also
contains a discussion on the use of bootstrapping to generate variances for these estimates.
The results section will contain the results of a simulation study highlighting the performance
of these methods under different coverage rates, different list counts, and when dependence
exists between lists. A conclusion and a brief discussion of limitations and next step will be
included at the end.
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The variance of our estimator is also of utmost importance to know. Since a closed form
variance can be hard to attain, bootstrap resampling can be used to estimate variances around
these estimates (Chao 1987). The validity of this method and will be confirmed against a large
sample approximation of the variance.

Methods

As stated before, capture-recapture methodology was first described in 1786, when Pierre-
Simon, Marquis de Laplace (Seber and Schofield 2019) used the method to attempt to estimate
the population of France. The first “capture” was a list based on the birth registries in all
of France. The second “capture” consisted of looking at the birth registries in just a few
parishes in France whose populations were more easily counted. By looking at the births in
just these parishes he was able to estimate the total population of France. The idea here is
that the proportion of the number of births in those parishes to their population sizes should
be equivalent to the proportion of the number of births in France to the population size of
France, which we are trying to determine. As an equation, this can be thought of as the
following:

Number of births in select parishes
Population of select parishes ≈ Number of births in France

Population of France

We know both values on the left hand side, and the numerator on the right, so using this
information we can get an estimate of the total population of France by solving for that
quantity. In this situation, we would have:

Population of France ≈ Population of select parishes ∗ Number of births in France
Number of births in select parishes

The same idea was used much later in 1917 when Dahl (Cren 1965) applied a similar methodol-
ogy to estimate the size of trout populations. In this method, which is the more commonplace
use nowadays, first one sample of size 𝑛1 is taken and all the fish in it are marked in some way.
Then, fish are caught a second time, and this time 𝑛2 are observed and we note how many
are already marked, calling this 𝑚12 since they appeared in both samples 1 and 2. We will
denote our total population with N, thus, our estimate of N will be 𝑁 . Using the same theory
as before, we would hope that the proportion of fish we capture in our sample from the total
population is the same as the proportion of marked fish we saw again in the second sample.
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Figure 1: Venn Diagram Displaying Idea of Capture-Recapture.

This can be seen visually in Figure 1, and is present in equation form here:

𝑛1
𝑁 ≈ 𝑚12

𝑛2

Thus, we have our estimate of N as:

𝑁 = 𝑛1𝑛2
𝑚12

This estimate allows us to get an idea of the total size of an animal population using what can
be relatively small samples compared to the entire population. We must note here there is an
assumption that the probability of showing up in one sample is independent of appearing in
the other sample (More on the importance of this assumption will come later). This estimate
is often referred to as the “Lincoln Petersen” estimate, named for the ornithologist Frederick
Charles Lincoln who described its creation, and marine biologist Carl Georg Johannes Petersen
who pioneered its use.

Brief Example

To make the method a little more concrete, we will consider a small working example. For
this example, imagine we are trying to estimate the size of a fish population in a pond.

To perform this procedure, we first take a sample of 100 fish and mark them in some way.
Then, after letting the fish disperse through the pond, we come back and take another sample
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of 100 fish. Now, we count how many marked fish appear in the second sample. In this
example, suppose it was 20.

Now, we use these values to calculate 𝑁 :

𝑁 = 𝑛1𝑛2
𝑚12

= 100 ∗ 100
20 = 500

Thus, we see in this situation we would estimate that the number of fish in the pond is 500.
It should be noted that in most situations we won’t have a perfect estimate of our population
like we do here, simply because the same amount won’t always overlap, but generally we will
have an unbiased estimate. This will be shown in greater detail later.

Epidemiological setting

While the idea of capture-recapture was used extensively in the estimation of animal popu-
lations, this isn’t the only scenario in which it works. The extension to the epidemiological
setting follows naturally, with a slight adjustment to our procedure for collecting the samples.
Instead of thinking about collecting subsequent samples where we are marking the captured,
we instead consider the existence of two or more lists, hopefully containing overlapping infor-
mation. These lists are simply lists of people known to have some disease, perhaps by a local
hospital, a school’s health center, a disease registry, or an insurance company. When used in
reference to human populations the term “multiple-record system,” is used, and our captures
become ascertainments, which indicate someone appears on a given list.

Chao et al. (2001) noted three main differences between the animal population and the human
population estimation. Firstly, we normally have a larger amount of lists for animals, whereas
epidemiological situations often only have two to four lists. Second, when we sample from an
animal population, the samples have a chronological ordering, whereas all the lists could be
collected at the same time for epidemiological data. Lastly, in animal studies the method of
obtaining samples is often the same, whereas the lists may be created in different ways, leading
to some level of bias between the lists.

Assumptions

In all settings, we must assume independence for all our samples and lists. Without this,
we run into the issue of getting inaccurate estimates based on our lists. Ideally, the rate of
recapture in the second sample is equal to the proportion of individuals captured in the initial
sample, giving us the formula from above 𝑛1

𝑁 ≈ 𝑚12
𝑛2

.

If the probability of showing up in one list is positively correlated with showing up in the
other, then our estimate will be an underestimate. We can see that if there exists a positive
correlation between appearing on the two lists, the chance of showing up on the second list
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will be greater than the proportion of individuals from the population on the first list. In a
formula, 𝑛1

𝑁 < 𝑚12
𝑛2

, and rearranging to get our estimate alone, we would have 𝑁 > 𝑛1𝑛2
𝑚12

. Since
we are still estimating using the right hand side, we would have an underestimate of the true
population size in this case.

If the probability of showing up in one list is negatively correlated with showing up in the
other, then our estimate will be an overestimate. In the case where there exists a negative
correlation between appearing on the two lists, we have that the chance of showing up on
the second list will be less than the proportion of individuals on the first list. Thus, we have
𝑛1
𝑁 > 𝑚12

𝑛2
which simplifies to 𝑁 < 𝑛1𝑛2

𝑚12
. Since our estimate is based on the right hand side,

we would have an overestimate of the true population size in this case.

In that vein, we also assume homogeneity within our lists. This means the probability that
person 1 appears in the list is the same probability that person 2 appears in the list. This
doesn’t necessarily mean that appearing in each list has the same probability, just that each
individual has the same chance of showing up in any given list.

Lastly, we assume that the population we are estimating the size of is closed. All this means is
that no individuals are entering or leaving our population between our list making. In practice
even if the population isn’t closed we can assume the population size is roughly constant by
assuming that the rates of entering and leaving are roughly equal.

Further explorations of the issues that occur without independence are present in the results
section.

Three list case

The case of working with just two lists is relatively straightforward, and unfortunately not
always much use. Since we only have two lists, we are limited to looking at the overlap
between just the two. It’s no surprise that with more data we get more accurate estimates of
the true value, so the natural next step is looking at the case of three lists. We will go through
the development of a three list estimator, as described in Chao et al. (2001).

Unfortunately, our old method of estimation does not commute immediately, so we must
define some new notation. We first define 𝑍00, 𝑍10, 𝑍01, and 𝑍11 as the counts of people that
appear in neither list, the first list, the second list, and both, respectively. Also, we define
the probability person 1 through 𝑁 appears in list 1 as 𝑝11, 𝑝21, ..., 𝑝𝑁1. Similarly, we denote
the probability person 1 through 𝑁 appears in list j as 𝑝1𝑗, 𝑝2𝑗, ..., 𝑝𝑁𝑗. Last, we define 𝑋𝑖𝑗 as
follows: if person 𝑖 is in list 𝑗 we say 𝑋𝑖𝑗 = 1, whereas if they do not appear in list j we say
𝑋𝑖𝑗 = 0. Thus, the indicator function 𝐼[𝑋𝑖𝑗 > 0] tells us whether or not person 𝑖 appeared on
list 𝑗. Now that we have notation, we will discuss sample coverage in the two list case.

We want to define a measure of coverage between our lists. We would like a proportion of the
number of people in list 2 and list 1 over the number of people in list 2. Thus, we define the
sample coverage of list 1 with respect to list 2 as:
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𝐶∗
𝐼𝐼(𝐿1) = ∑𝑖 𝑝𝑖2𝐼[𝑋𝑖1 > 0]

∑𝑖 𝑝𝑖2

The numerator is the sum of the probabilities of each person in list 1 appearing in list 2, while
the denominator is the number of people in list 2. Taking the expectation will thus give us the
ratio we desire. Doing so allows us to get a better idea of what our estimator should be:

𝐸[𝐶∗
𝐼𝐼(𝐿1)] = 𝐸 [∑𝑖 𝑝𝑖2𝐼[𝑋𝑖1 > 0]

∑𝑖 𝑝𝑖2
] = 𝐸[∑𝑖 𝑝𝑖2𝐼[𝑋𝑖1 > 0]]

𝐸[∑𝑖 𝑝𝑖2]

By the linearity of expectations and the fact that 𝐸[𝑝𝑖2] = 𝐸[𝑋𝑖2] we have:

𝐸[∑𝑖 𝑝𝑖2𝐼[𝑋𝑖1 > 0]]
𝐸[∑𝑖 𝑝𝑖2] = ∑𝑖 𝐸[𝑋𝑖2𝐼[𝑋𝑖1 > 0]]

∑𝑖 𝐸[𝑋𝑖2] = 𝑍11
𝑛2

Taking the average over this value for both lists we can get an estimate of our sample coverage.
Thus, our estimate of the sample coverage is:

𝐶 = 1
2 (𝑍11

𝑛1
+ 𝑍11

𝑛2
) = 1 − 1

2 (𝑍10
𝑛1

+ 𝑍01
𝑛2

)

Given independence in both ways, within and between the lists, we can reduce 𝐶 to:

𝐶 = 1
2 (𝑍11

𝑛1
+ 𝑍11

𝑛2
) = 1

2 (𝑛1
𝑁 + 𝑛2

𝑁 ) =
𝑛1+𝑛2

2
𝑁

We will call this top quantity 𝐷 = 𝑛1+𝑛2
2 . Notice that this is equivalent to 𝐷 = 1

2(𝑍10 + 𝑍11 +
𝑍01 + 𝑍11) Thus, our estimate of 𝑁 is:

𝑁 = 𝐷
𝐶

Substituting 𝐷 and 𝐶 into this, we get that in the two list case our estimate is:

𝑁 =
𝑛1+𝑛2

2
1
2 (𝑍11

𝑛1
+ 𝑍11

𝑛2
)

= 1
𝑍11

𝑛1 + 𝑛2
𝑛2+𝑛1
𝑛1𝑛2

= 𝑛1𝑛2
𝑍11

This can be recognized as the same estimate we had earlier, but setting up the two list case
in this way makes the intuition of the three list case much more clear.
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First, we would like an analog of the sample coverage in the three list case. Similar to what
we did earlier, we define the sample coverage of list 3 with respect to lists 1 and 2 as:

𝐶∗
𝐼𝐼𝐼(𝐿1 ∪ 𝐿2) = ∑𝑖 𝑝𝑖3𝐼[𝑋𝑖1 + 𝑋𝑖2 > 0]

∑𝑖 𝑝𝑖3

Once again, we can take the expectation and get:

𝐸[𝐶∗
𝐼𝐼𝐼(𝐿1 ∪ 𝐿2)] = 𝐸 [∑𝑖 𝑝𝑖3𝐼[𝑋𝑖1 + 𝑋𝑖2 > 0]

∑𝑖 𝑝𝑖3
] = 𝐸[∑𝑖 𝑝𝑖3𝐼[𝑋𝑖1 + 𝑋𝑖2 > 0]]

𝐸[∑𝑖 𝑝𝑖3]

Once again, by the linearity of expectations and the fact that 𝐸[𝑝𝑖3] = 𝐸[𝑋𝑖3] we have:

𝐸[∑𝑖 𝑝𝑖3𝐼[𝑋𝑖1 + 𝑋𝑖2 > 0]]
𝐸[∑𝑖 𝑝𝑖3] = ∑𝑖 𝐸[𝑥𝑖3]𝐼[𝑋𝑖1 + 𝑋𝑖2 > 0]]

∑𝑖 𝐸[𝑥𝑖3] = 𝑍011 + 𝑍101 + 𝑍111
𝑛3

Notice that since 𝑛3 = 𝑍001 + 𝑍011 + 𝑍101 + 𝑍111, we can rewrite the above as:

𝑍011 + 𝑍101 + 𝑍111
𝑛3

= 𝑛3 − 𝑍001
𝑛3

= 1 − 𝑍001
𝑛3

We will once again take an average over these values for all three lists to get an estimate of
our sample coverage. Thus, our estimate of the sample coverage is:

𝐶 = 1 − 1
3 (𝑍100

𝑛1
+ 𝑍010

𝑛2
+ 𝑍001

𝑛3
)

We define D in a similar way as before, although it looks more complicated:

𝐷 = 1
3 (∑

𝑖
𝐼[𝑋𝑖2 + 𝑋𝑖3 > 0] + ∑

𝑖
𝐼[𝑋𝑖1 + 𝑋𝑖3 > 0] + ∑

𝑖
𝐼[𝑋𝑖1 + 𝑋𝑖2 > 0])

This can be thought of as the average number of people observed in each pair of two of the
lists. Naturally, we want a formula for quickly finding 𝐷. First, we define 𝑀 as the total
distinct people we observe over all the lists. Notice we have 𝑀 − 𝑍100 = 𝑍010 + 𝑍001 + 𝑍110 +
𝑍101 +𝑍011 +𝑍111. The same is true for 𝑀 −𝑍010 and 𝑀 −𝑍001. Now, our formula for finding
D is:

𝐷 = 1
3 ((𝑀 − 𝑍100) + (𝑀 − 𝑍010) + (𝑀 − 𝑍001)) = 𝑀 − 1

3(𝑍100 + 𝑍010 + 𝑍001)
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We combine these two values into our estimate 𝑁 to get:

𝑁 = 𝐷
𝐶

When we have independence, this will yield an unbiased estimate of the total population
size. Simulations confirming this and the effectiveness of the bootstrap in this situation will
follow.

Example

To make this a bit more tangible we will consider a small example. Suppose there is some
infection going around a college campus, and lists of infected students are kept by three
different groups. Imagine these lists each contain 100 students, although each student is not
necessarily on only one list.

Figure 2: Venn Diagram of Small Example.

First, we must calculate the amount of singletons. That is, the number of students detected in
one of the lists, but not appearing in either of the other two. From Figure 2, we can see that
for this example, the lists end up containing 58, 59, and 67 singletons. These are the values
of 𝑧100, 𝑧010, and 𝑧001, respectively.

Thus, our value of 𝐶, the sample coverage, is:

𝐶 = 1 − 1
3 ( 58

100 + 59
100 + 67

100) = 1 − 61.3
100 = 0.387

Now, to get 𝐷 we first need to get 𝑀 , the total number of observed people across all lists. In
this example our value of 𝑀 ended up being 241. So we can calculate 𝐷 as follows:
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𝐷 = 241 − 1
3(58 + 59 + 67) = 241 − 61.3 = 179.7

Thus, we can get our estimate of 𝑁 as:

𝑁 = 𝐷
𝐶

= 179.7
.387 = 464.34 ≈ 464

So our final estimate in this example is that the total population is of size 464. This data
was generated by sampling from population with size 500. Thus, our estimate is a bit of an
underestimate, but overall close to the true value.

Variance of the Estimate

Recall from earlier our estimate of the population size in the two list case, 𝑁 = 𝑛1𝑛2
𝑚12

. While
this estimator may be unbiased, the next most important thing we must know about it is the
variability behind its estimates. In the two list case we can do so as follows:

First, notice that since 𝑚12 is the number of observations present in list 2 that were already
present in list 1, we can model its distribution as a hypergeometric random variable. This
makes intuitive sense, as 𝑚12 is generated by counting the number of people already present
in list 1 (successes) obtained in our sample from N (the population). Thus, we can write 𝑚12
~ 𝐻(𝑛2, 𝑛1, 𝑁), where H represents a hypergeometric distribution with a sample size of 𝑛2, 𝑛1
successes in the whole population, and a population size of 𝑁 that we are sampling from. The
variance of 𝑚12 is thus given to us by the variance of a hypergeometric random variable:

𝑉 (𝑚12) = (𝑁 − 𝑛2
𝑁 − 1 ) (𝑛2) (𝑛1

𝑁 ) (𝑁 − 𝑛1
𝑁 )

We will use the fact that 𝑁 = 𝑛1𝑛2
𝑚12

and the delta method (Liu 2012) to find this variance.
We are able to apply the following formula to find the variance, where 𝑓(𝑚12) is a function of
𝑚12:

Var(𝑓(𝑚12)) ≈ (𝑓 ′(𝑚12))2 Var(𝑚12)

Notably, 𝑁 is a function of 𝑚12, with 𝑁 = 𝑓(𝑚12) = 𝑛1𝑛2
𝑚12

. Although 𝑛1 and 𝑛2 have variability
associated with them, it is small relative to the variance of 𝑚12. Hence, they will be treated
as constants for the calculation of the variance with no effect on the final result. Thus, taking
a derivative yields 𝑓 ′(𝑚12) = − 𝑛1𝑛2

(𝑚12)2 . So, we have:
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Var(𝑁) ≈ (− 𝑛1𝑛2
(𝑚12)2 )

2
(𝑁 − 𝑛2

𝑁 − 1
) (𝑛2) (𝑛1

𝑁
) (𝑁 − 𝑛1

𝑁
)

Noting that (− 𝑛1𝑛2
(𝑚12)2 )2 = 𝑁2 ( 1

𝑚12
)2

, we can perform some algebra to get:

Var(𝑁) ≈ ( 1
𝑚12

)
2

(𝑁 − 𝑛2
𝑁 − 1

) (𝑛2) (𝑛1) (𝑁 − 𝑛1)

Now, observe that 𝑁 − 𝑛2 = 𝑛1𝑛2
𝑚12

− 𝑛2𝑚12
𝑚12

= 𝑛2
𝑚12

(𝑛1 − 𝑚12) and by similar calculations,
𝑁 − 𝑛1 = 𝑛1

𝑚12
(𝑛2 − 𝑚12). So now we have:

Var(𝑁) ≈ ( 1
𝑚12

)
2

( 𝑛2
𝑚12

(𝑛1 − 𝑚12)) ( 1
𝑁 − 1

) (𝑛2) (𝑛1) ( 𝑛1
𝑚12

(𝑛2 − 𝑚12))

Rearranging this gives us:

Var(𝑁) ≈ ( 1
𝑚12

)
4

( 𝑛1𝑛2
𝑁 − 1

) (𝑛2(𝑛1 − 𝑚12)) (𝑛1(𝑛2 − 𝑚12))

Noticing that 1
𝑚12

(𝑛1𝑛2
𝑁−1 ) = 𝑛1𝑛2

𝑛1𝑛2−𝑚12
. Asymptotically this term approaches 1, so our ultimate

approximation of the variance is thus:

Var(𝑁) ≈ ( 1
𝑚12

)
3

(𝑛2(𝑛1 − 𝑚12)) (𝑛1(𝑛2 − 𝑚12))

However, this variance is only able to be computed in the two list case. The three list case
doesn’t have a nice closed form like this does. Thus, we would like to confirm that boot-
strapping yields appropriate variance estimates in the two list case using this formula and the
bootstrap. Once we know the bootstrap works for two lists, we can assume it commutes and
will work for three lists as well. Thus, we will be able to find variances in the three list case,
where it otherwise may not be possible to do so.
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Results

The demonstration of application of this method will use only simulated data, as real world
data won’t provide us with a known population size we can compare to our estimates.

Generally, our simulated data is created by assuming some population size N. Then, we sample
from this population to create our lists, where each person has probability 𝑝 of appearing in a
given list.

Table 1: Sample of List Data Format

ID List 1 List 2 List 3
1 1 1 0
2 1 0 1
3 1 0 0
4 1 1 1
... ... ... ...

Table 1 displays what the data look like. A 1 in a cell indicates that person is present on that
list, while a 0 indicates they are not present. For example, the individual with ID 1 is present
on lists 1 and 2, but not 3. Notice, there are some individuals not present on any lists, such
as individual 8.

Bootstrapping for Variance

Our first endeavor into simulation will be to show that the bootstrap variance is a valid
substitute for the large sample approximation of the variance, as this will allow us to use
it in our comparisons of different scenarios. This is a necessary step, as the large sample
approximation will only apply in the two sample case, and most situations we are interested
in involve at least three lists. This is because of the fact that the three sample case does not
have a simple formula for direct computation of the variance, although we would still like an
idea of the variability of our estimates.

First, we confirm that the bootstrap will yield variances similar to those we obtain through the
use of the large sample approximation. For this simulation, in each iteration we will generate
two lists of size 100 by sampling from our population of size 500. Then, for each iteration we
will directly calculate the variance using the formula for the large sample approximation, as
well as creating 100 bootstrap resamples.

Our method for bootstrapping is as follows. For each individual captured on at least one list,
define their “coverage history” as the lists they are present on. For example, if person 1 was on
lists 1 and 2, their coverage history would be (1,1). To bootstrap, we consider all individuals
we have on at least one list, then resample from these capture histories with replacement.
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Our new sample size should be equal to the total number of people we observed, as with any
bootstrap procedure. After doing this, we can compute our estimate 𝑁 for each bootstrap
sample to get an idea of the variability around our estimate. This method is taken from
method 1 of Norris and Pollock (1996).

To compute the variance we use the classic definition of sample variance applied to the boot-
strap estimates. Our formula for this is:

̂𝑉 𝑎𝑟( ̂𝑁)𝑏𝑜𝑜𝑡 = 1
𝐵 − 1

𝐵
∑
𝑏=1

( ̂𝑁𝑏 − ̄̂𝑁)2

Where B is the number of bootstrap iterations and ̄ ̂𝑁 = 1
𝐵 ∑𝐵

𝑏=1
̂𝑁𝑏. This calculation is taken

from page 24 of Laura Gruber’s master thesis (Gruber 2023).

Correlation:  0.93
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Figure 3: Scatterplot of Large Sample Approximation of Variance vs Bootstrap Estimate of
Variance with Line y=x and Smoothing Spline. We observe that the bootstrap
estimate tends to be slightly larger than the LSA, though the correlation between
the two estimates is quite strong (0.93, 95% CI ranges from 0.92 to 0.94).

From Figure 3 we can see that our bootstrap estimate of variance is almost always overes-
timating the large sample approximation, as the points generally lie above the line 𝑦 = 𝑥.
Also, our bootstrap estimate is generally worse as our large sample approximation increases,
which is of moderate concern, but since those variances appear to be outliers, we can safely use
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the bootstrap as an estimate of the variance when we have at least 100 bootstrap resamples.
Additionally, since the estimates are close enough, it seems reasonable that we can compare
two bootstrap estimates of the variance to each other.
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Figure 4: Density Plot of Difference Between Large Sample Approximation and Bootstrap
Variance. We see that the bootstrap overestimates slightly in most situations, with
some rare large outliers.

Another way to visualize these differences is through Figure 4. We can see that the distribution
of differences between the two methods is extremely right skewed and centered slightly above
0. Thus, as noticed previously, the bootstrap estimates are often overestimating the large
sample approximation of the variance. Additionally, the right tail contains very few values,
with only 9 differences being greater than 25000 in magnitude.

Two Versus Three Lists

It is generally accepted that the more data we are able to obtain the better our estimates will be,
however, there is often a difficulty in obtaining more data. In the case of capture-recapture and
list ascertainment, there is an inherent push-pull relationship between our capture probabilities
and the number of lists we have. This is owing to the fact that research often has logistic or
budgetary constraints that must be balanced. With that in mind, we sought to find evidence
in favor of using more lists, even if necessarily we will have fewer captures on each list.
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(a) Two Lists (p = 0.3, N = 500)

(b) Three Lists (p = 0.2, N = 500)

Figure 5: Expected Overlap with Varying List Counts. Note the Total Population is of Size
500

Table 2: Table of Summary Statistics of Estimators for Different List Counts and Different
Capture Probabilities p (Simulations = 1000)

Three Lists (p = 0.2) Two Lists (p = 0.2) Two Lists (p = 0.3)
Median 500.00 500.00 500.00
Mean 504.95 518.18 506.22
Standard Deviation 50.50 107.96 56.98

From Table 2 we can see that the case with three lists performs the best, in terms of both
reducing bias and variability around our estimate. The median of all our estimates is the
same, the correct value of 500. However, when comparing the use of 3 lists with just 2 lists,
both with capture probability of 0.2, we see that the additional list reduces the bias by about
75%. Additionally, the third list roughly halves the standard deviation, a huge improvement
in terms of the variability of our estimate.

Based on the expected number of people in the overlap of the lists, we get that the two list
case with capture probability 𝑝 = 0.3 should capture 255 distinct people on average, while the
three list case with capture probability 𝑝 = 0.2 will capture 256. This can be seen by summing
all the values present in Figure 5.

Although we only saw one more person in terms of distinct people observed, we can see from
Table 2 that we can obtain better estimates solely by using three lists, even with lower capture
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probability. Thus, making the more fair comparison by increasing the capture probability in
the two list case, we obtain a similar number of people across the lists as in the three list
case, yet it is still slightly more biased. Additionally, the standard deviation of our estimate is
reduced by about 7 people in the three list case. Note that while these aren’t exact estimates
and rely on the bootstrap, we showed previously that the bootstrap yields similar variances
to the large sample approximation.
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Figure 6: Density Plot of Population Estimates with Different List Counts. We see the two
scenarios are very similar, although the 2 list case has heavier tails.

We draw the same conclusions from Figure 6 that we did previously. The two list case leads
to a slightly more positively biased estimator on average, hence the peak slightly to the right
of the true population size of 500. Additionally, the tail is a bit thicker on both ends for the
two list case compared to the three lists. Besides these slight differences, the distributions look
largely similar.

Given this information, it is preferable to use more lists when possible, even if the size of each
list must be reduced to account for it.

Different capture rates

Another interesting perspective is to see how much better our estimates get as our capture
probabilities increase. For this case we still suppose a population of size 500, but instead of
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always capturing 100 people per list, we capture 50, 100, or 200, depending on the scenario.
Thus, our capture rates vary from 10% to 20% to 40%. Note that in this case we have three
lists again for all three capture probabilities.
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Figure 7: Density Plot of Population Estimates with Different Capture Probabilities. We ob-
serve that our estimates become much less variable as the capture probability in-
creases.

We can see from Figure 7 that as the capture probability increases the variance around our
estimate decreases drastically. Additionally, while all the distributions are generally unbiased,
the slight underestimate of the peak is also corrected by the increase in capture probability.
This isn’t a surprising result, as we get more people on our lists our estimates get better, but
just how much the variance decreases as our probability increases is of note.

Table 3: Table of Summary Statistics of Estimators for Different Capture Probabilities

Capture Probability 10% 20% 40%
Median 510.71 500.00 500.78
Mean 527.08 504.95 501.17
Standard Deviation 137.17 50.50 18.19

Table 3 supplies summary statistics for the three different capture probability scenarios. We
can see that all 3 methods have a positive bias, although the size of the bias decreases as our
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capture probability increases. Similar to what we saw above, the standard deviation of our
estimate decreases by roughly 60% as we double our capture probability.

With all that said, whenever possible, a higher capture probability should be strived for. This
isn’t always attainable, but any increase in capture probability will reduce the variance, so
even a slight increase is beneficial.

Dependence

Last, we illustrate a very brief example where our estimates fail if there exists dependence
between the lists. In this example, we consider three scenarios:

1. The probability of appearing on list 1 is completely independent of the probability of
appearing on list 2. In both cases the probability of appearing on a given list is 0.2.

2. The probability of appearing on list 2 is somewhat dependent on appearing on list 1. In
this case the probability of appearing in list 1 is 0.2, whereas the probability of appearing
in list 2 is either 0.5 or 0.2 if someone is in list 1 or not, respectively. This set up induces
a correlation of 0.43 between the two lists.

3. The probability of appearing on list 2 is highly dependent on appearing on list 1. In this
case the probability of appearing in list 1 is 0.2, whereas the probability of appearing in
list 2 is either 0.7 or 0.2 if someone is in list 1 or not, respectively. This set up induces
a correlation of 0.69 between the two lists.
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Figure 8: Density Plot of Population Estimates in Different Scenarios. We observe that as our
lists become more dependent our estimate becomes more and more biased.
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As we can see from Figure 8, our estimates get worse and worse as the correlation between
the lists goes up. In the case of independence between the two lists our estimate is roughly
centered around the true value of 500. However, with a correlation of 0.43 between the two
lists our estimate appears centered around 500, and as the correlation increases to 0.69 it dips
even lower. The exact values are displayed as follows:

Table 4: Table of Summary Statistics of Estimators in Different Scenarios

Independent (r = 0) Dependent (r = 0.43) Highly Dependent (r = 0.69)
Median 498.64 259.77 213.87
Mean 518.49 262.02 214.87
SD 101.95 24.30 15.22

From Table 4 we can see that in the independent case our classic estimator produced a roughly
unbiased result, whereas the dependent scenarios produce wildly biased results. Similar to
the underestimate when the correlation is positive, there will be an overestimate when the
correlation is negative.

Chao proposes some solutions to the issue of dependence beyond the scope of this paper. The
most commonly used correction for the dependence issue is to use something known as a “log
linear model,” which allows us to correct for this dependence and the associated bias in our
estimates.

Summary of Results

The results generally confirmed intuition that was already present. Higher capture rates and
more lists lead to better estimates, as we may have more data to make those estimates with.
Additionally, dependence between the lists will lead to biased estimates, which can be corrected
for with log-linear models.

Discussion

Limitations

While the methods in this paper exist as a simple, straightforward way to estimate a population
size, their simplicity comes at the cost of lacking a degree of robustness.

First, it should be duly noted that the methods outlined in this will paper will only produce
unbiased estimates in the case of independence between lists. If this assumption is violated,
dependence can lead to over or under estimates. While there are ways to fix this, they are
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beyond the scope of this paper and those interested should look to Chao et al. (2001) for a
more comprehensive dive into the methodology.

Further, we assumed a closed population with our models, which is close enough to being true
in most cases, as discussed in the Assumptions section. However, if we have reason to believe
this is not true, different methods may have to be used.

Lastly, these methods only work if the sample coverage is adequate. If the lists capture a
very small percent of the population, we could have issues with overlap counts. Thus, a low
coverage approach may need to be taken, which can also be seen in Chao et al. (2001).

Application

Capture-recapture is most commonly used in animal populations, but has also been used in
other fields. As discussed, these methods are popular in epidemiology for estimating the size of
a diseased population (Chao et al. 2001). Additionally, one application that capture-recapture
has been gaining traction in is that of estimating the number of people that are victims of
modern slavery. By using lists provided by various monitoring organizations, such as local
authorities or the National Crime Agency in the UK, the total number of victims was able to
be estimated as somewhere in the range 10000-13000 (Silverman 2020). These estimates can
play a pivotal role in policy making, as the Modern Slavery Act 2015 was heavily influenced
by this work. With that in mind, it is of great importance to make sure these estimates are
as accurate as possible, but also reflect the variability inherent in their estimation.

Conclusion

Ultimately, we saw that capture-recapture methods fair well in terms of bias even in situations
with low coverage and a lower amount of lists. However, whenever possible more lists and
more captures should be sought after, as long as they are of sufficient quality.

Additionally, we saw substantive bias in our estimates when we adjusted the lists to have just
a moderate amount of dependence (𝑟 = 0.43). While there are methods to correct for this
dependence, the estimators outlined in this paper are much simpler and more interpretable.
Future work could delve into the dependent case more thoroughly, as there is most likely some
amounts of dependence that are largely ignorable.

Lastly, capture-recapture is applicable to several fields, and more uses are being pioneered every
year. One recent paper applying these methods has sought to estimate dementia prevalence
in New Zealand (Ma’u et al. 2024). Another unique application used capture-recapture to
estimate road traffic mortality in Zambia (Mwale et al. 2023).
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