
On the Generative Process of Solar Flares: Non-Poisson Behavior

Abstract

The number of solar flares occurring in the corona is strongly correlated with the phase of the
solar cycle. It is common practice to describe the yearly flare count distributions with a Poisson
distribution. We find that the observed distributions are overdispersed relative to that expected
from Poisson, and thus conclude that a Poisson generative model is not appropriate to fit to flare
data aggregated in that manner. We propose that only those flares that occur within a given
active region should be modeled as a Poisson process, finding that this is only the case for about
50% of active regions from which a considerable number of flares originate. The accumulation
of flares from several concurrent active regions explains the observed properties of flares counts.
This result has a limiting impact on assumptions for describing the physical processes of solar flare
occurrences, as well as the analysis and modeling of the distribution of flares energies, which are
known to be distributed as power-laws.



1 Introduction

Billions of years ago in one of the spiraling
arms of the Milky Way galaxy, a dense cloud of
dust and gas began to collapse under gravity,
forming a protostar that spewed jets of gas into
interstellar space [3]. Eventually, the amount
of material pulled into this formation caused
the gravity to become so intense that hydrogen
atoms at its center began to fuse into helium
atoms. At this point, a new star was born:
the Sun [13]. Since the formation of Earth and
the evolution of terrestrial life, humans have
relied on the Sun to bring life to crops, har-
ness energy for a multitude of activities, and
have wondered about its origins and role in the
universe.
While the sun is a necessity for humanity

to thrive on Earth, it also poses a threat to
the prosperity of life. The outer solar atmo-
sphere, the corona, extends millions of kilome-
ters into interplanetary space [7]. This non-
uniform region about the sun is not easily ob-
served with the naked eye, but can be viewed
at di↵erent wavelengths of the electromagnetic
spectrum or during a solar eclipse as shown
in Figure 1 [9]. Here, the sun’s magnetic
fields become complex, twisting and suddenly
changing. These changes produce violent, ex-
tremely energetic solar storm events that per-
meate throughout the solar system. These
events can damage satellites in orbit, disrupt
communications on Earth, and in the age of
space travel, can harm or even kill astronauts.

1.1 Solar Flares

The most intense of these solar storm events
are solar flares, the focus of this paper. Solar
flares are bursts of light and radiation caused
by an impulsive release of stored magnetic en-
ergy from the sun. They are seemingly random
events, whose intensities and energy releases
vary over several orders of magnitude and fol-
low power-laws [6]. Flares tend to occur in
active regions, areas in the corona with strong
magnetic fields that are closely associated with
sunspots (see Figure 2).

Figure 1: The corona of the sun viewed during
the 2017 total eclipse. Credit: NASA

Figure 2: Several concurrent active regions
(dark and light regions) on the disk of sun in
March 2014. Credit: SolarMonitor.org
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Figure 3: X9.3 class solar flare that occurred
in 2017. Credit: SDO

The number of active regions changes
throughout a roughly 11 year cycle of increas-
ing and decreasing activity, called the solar
cycle, because of the structural change of the
sun’s magnetic field. Near the solar maximum
there are many active regions, and near the so-
lar minimum there are very few. Since flares
typically originate from active regions, it fol-
lows that as the number of active regions in-
creases, then the number of flares will also in-
crease. As a result, the frequency of flares also
closely follows the solar cycle.
High intensity flares that could have adverse

e↵ects to space operations, like the one pic-
tured in Figure 3, increase in frequency near
the solar maximum. Thus, understanding the
underlying physical processes of solar flares is
in the best interest of space agencies, anyone
operating or using satellites and their services,
and humanity in general. Properly modeling
the generative process of solar flare occurrences
is an essential step to understanding and pre-
dicting flares.

1.2 Overview

Within this paper we aim to determine if solar
flares follow a Poisson process using both tem-

poral and spatial groupings, and discuss the
implications of the results of our analysis. In
investigating flare occurrences, it is important
to acknowledge the instruments used to make
flare observations and present their limitations.
In addition, an in-depth understanding of the
Poisson process and its assumptions are nec-
essary before performing any statistical anal-
ysis. Section 2 gives an overview of the satel-
lites that are used to collect solar flare data,
consider equipment and data limitations, and
present the data wrangling process. Next, Sec-
tion 3 contains an in-depth explanation of the
Poisson process in the context of solar flares.
In Section 4, we outline the methods utilized
to evaluate goodness of fit and also conduct a
power analysis. Section 5 covers the results of
fitting a Poisson distribution to yearly 10-day
flare count distributions, as well fitting an ex-
ponential distribution to the waiting times of
flares within distinct active regions. Finally,
the discussion and implications of the results
are presented in Section 6.

2 Solar Flare Data

The data utilized in our research was retrieved
from the Geostationary Observational Envi-
ronmental Satellite (GOES) database. There
has been a total of 17 GOES satellites that
have been in orbit as early as 1975, all main-
tained by the National Aeronautics and Space-
flight Administration (NASA) and the Na-
tional Oceanic and Atmospheric Administra-
tion (NOAA) [8]. Our set of data has its
earliest observation of a solar flare in July of
1996, with the most recent flare in the dataset
being observed in December of 2019. These
observations span across solar cycles 23 and
24. The observations were made by several
satellites over the 24 years of data collection,
with GOES-7 and GOES-16 being the oldest
and newest satellites to collect data, respec-
tively. GOES-1 through GOES-17 are outfit-
ted with the X-Ray Sensor (XRS), an instru-
ment that observes the sun’s soft X-ray irradi-
ance in the 0.5-4 Angstrom (0.05-0.4 nm) and
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1-8 Angstrom (0.1-0.8 nm) bands. The XRS is
used to detect solar events like flares.

2.1 Flare Detection

An important part of analyzing the data from
the GOES satellites is to understand how ex-
actly a flare is detected. One may ”visually”
observe a flare in the corona going o↵ by us-
ing equipment such as the Solar X-Ray Imager
(SXI) on board the satellites, but it is more
useful to examine the X-ray flux to track so-
lar activity and identify flares. As previously
mentioned, the X-Ray Sensors on the GOES
satellites are utilized to collect data on the so-
lar X-ray flux in the 0.5-4 Angstrom (short)
and 1-8 Angstrom (long) bands at all times.
The GOES long band (1-8 Angstrom) is used
to detect the flares in our dataset.
The primary GOES satellite transmits 1-

minute X-ray flux data back to earth in both
the short and long bands. The live data can be
found on the Space Weather Prediction Center
(SWPC) website. Figure 4 is a screenshot from
the SWPC website of X-ray flux observed by
GOES-16 over 7 days, where the red line repre-
sents the 1-minute X-ray flux in the long band
and the blue line represents the 1-minute flux
in the short band. It can be seen that there is a
consistent ”noise” in the flux in the long band,
sometimes broken up by intermittent spikes.
The noise is given by the constant radiation
of the sun, while these significant spikes in the
flux are what would typically be characterized
as solar flares.
Solar flares are automatically detected by an

algorithm developed for the GOES satellite.
To avoid delving into the specifics of the de-
tection algorithm, we can describe the occur-
rence of a flare as being determined by a peak
in the flux that is significantly above the reg-
ular flux background noise. When we detect
these flares we report several observed prop-
erties. These properties include the peak flux
and peak time of the flare, the start and end
times of the flare, and the total energy in ergs

released by the flare. It is important to clarify
how the start and peak times of flares are de-

fined, as this is integral to the analysis being
conducted. The peak time of a flare is defined
as the minute at which the peak X-ray flux oc-
curs, while the start time of the flare is defined
as the first minute in a sequence of 4 minutes
of steep monotonic increase in the long band
flux [12].
Some flare peaks are harder to make out

from the background noise when flares are
small, especially when multiple flares occur in
quick succession. Zooming in to a 5-hour time
interval of flux data, Figure 5 displays three so-
lar flares that would likely be automatically de-
tected by the algorithm. Observation A. points
out two flares that occur in quick succession.
The first flare would likely be detected, as well
as the second flare. However, the rise time of
the first flare is clear while the second flare’s
rise time is not. In addition, it is di�cult to
determine the descent of the first flare since
these two flare fluxes overlap. Observation B.
is a single flare that can easily be made out
from the background noise, having a clear rise,
peak, and descent in flux.

2.2 Data Wrangling

Once a flare is observed through the pro-
cesses described in the previous sections, its
measured properties are recorded and placed
in a database. We formulate our dataset
using data originating from the GOES flare
database, only utilizing observations recorded
by the GOES-7 through GOES-16 satellites be-
tween 1996 and 2019. This time period covers
almost the entirety of solar cycles 23 and 24.
The flares’ start and end times, peak times and
fluxes, and total energies are not the only prop-
erties recorded. We also collect information on
their locations (longitude and latitude), the ac-
tive regions in which they occurred, data qual-
ity of the observations, and several more prop-
erties. For the purposes of this research it is
not necessary to use all the included measure-
ments, so the utilized measurements are given
in Table 1 alongside their corresponding defi-
nitions and units.
Before utilizing the solar flare data in our
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Figure 4: Example of X-ray flux observed by GOES-16 (March 11-18, 2021). The red line is the
1-minute X-ray flux in the long band that we use to determine the occurrence of a solar flare.
Credit: SWPC

Figure 5: Flares are detected by peaks in the flux above the regular background flux noise in the
long band (red) (March 12, 2021). Observation A. identifies two B-class flares that occur in quick
succession, making it di�cult to collect accurate data. Observation B. is a single A-class flare that
is easily identified. Credit: SWPC
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Variable Definition

Peak Flux peak flux in long band at earth (ergs/s/cm2)

Total Energy total energy released at sun (ergs)
Start Time start time in YYYY-MM-DDTHH:MM:SS
Peak Time time of peak flux in YYYY-MM-DDTHH:MM:SS
Duration time the flare lasted (sec)

Active Region # active region number assigned to flare, if known
Longitude longitude of location flare occurred, if known
Latitude latitude of location flare occurred, if known

GOES Satellite GOES satellite that observed the flare

Table 1: List of variables utilized in our dataset.

analysis, it is necessary to properly prepare the
data. The pre-processed dataset has a total of
38,114 observations. We outright remove any
observations that are designated as NA. If an
observation has an unreasonable value due to
a recording error for the variables given in Ta-
ble 1, such as a negative total energy value,
these observations are also outright removed.
Although a small proportion of observations,
we filter out observations that are designated
as poor quality by the GOES satellites or not
made in the 1-8 Angstrom band. Once these
observations are removed, making up roughly
12.25% of the observations in the original data,
the processed data has a total of 33,445 obser-
vations.

3 Solar Flares as a Poisson

Process

The number of flares occurring at any given
time is dependent on the phase of the solar
cycle. We observe that the frequency of flares
increases as the solar maximum is approached,
and decreases near the solar minimum. This
trend can be viewed in the aggregated flare
counts through the bar plot shown in Figure
6, where each bar represents one year.
This trend may be self-evident with even a

limited understanding of solar physics, but fig-
uring out how the flare counts are distributed
does not have nearly as obvious of an answer.
Flares can be thought of as random events that

occur at some rate. This rate is non-stationary
through time given the cyclical nature of flare
counts. However, if we select some interval of
time such that the rate is stationary, then the
flare counts could follow a Poisson distribution
and their occurrences modeled by a Poisson
process.

3.1 Poisson Process

The occurrence of flares are random, meaning
the precise time at which a flare occurs is un-
known, but we may assume that they occur at
some constant rate �. Let N(t) be the number
of flares that occurred at or before time t, such
that N(0) = 0. If we observe the sun for a time
where t 2 [0,1), we may break this time up
into tiny intervals of length �, such that from
[0, t] there are m = t/� intervals. For each in-
terval we may observe at most one flare, so we
can treat the occurrence of a flare in each inter-
val as a Bernoulli trial with probability p = ��

of a flare occurring. Further assuming that the
occurrences of flares in disjoint time intervals
are independent, N(t) follows a Binomial dis-
tribution

P (N(t) = n) =

✓
m

n

◆
p
n(1� p)m�n

. (1)

We know that as � ! 0, m ! 1 and p ! 0
the Binomial distribution approaches the Pois-
son distribution. The parameter for this Pois-
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Figure 6: Bar plot of aggregated flare counts per year throughout solar cycles 23 and 24, where
each bar represents one year.

son distribution is mp = t
��� = �t, so N(t)

follows a Poisson distribution

P (N(t) = n) =
e
�(�t)(�t)n

n!
. (2)

What has been outlined is known as a Pois-
son process. It is of our interest to model flare
occurrences using a Poisson process, if it is ap-
propriate, because of its properties and impli-
cations for understanding the physics of flares.
We may select any length of time and the num-
ber of flares occurring should follow a Poisson
distribution with some rate � of flares per unit
time. If we choose to model flares this way, we
make the following assumptions,

1. the occurrences of a flare in one time in-
terval is independent of the occurrence of
a flare in any other time interval;

2. for a given length of time, the rate of oc-
currence � is constant.

As a consequence, the time between two suc-
cessive flare occurrences, what we call the wait-

ing time, follows an exponential distribution.
To see this, let Wi be the time elapsed be-
tween the i�1 and ith flare (called the ”waiting
time”), then for the first flare

P (W1 > t) = P (N(t) = 0)

=
e
�(�t)(�t)0

0!
= e

�(�t)
.

(3)

The cdf FW1(t) = P (W1  t) = 1�P (W1 >

t), such that

FW1(t) =

(
1� e

��t
, if t � 0

0, otherwise.
(4)

This is the cdf for an exponential distribu-
tion. Now let W2 be the waiting time between
the first and second flare. If the first flare oc-
curs at time s and t is the elapsed time between
the first and second flare, where s, t > 0, then
it follows that the second flare does not occur
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in the interval (s, s+ t]. Alternatively, we may
write

P (W2 > t|W1 = s) =

P (no flare occurs in (s, s+ t]|W1 = s).
(5)

Since the intervals (0, s] and (s, s + t] are
disjoint, flare occurrences in these intervals are
independent and

P (W2 > t|W1 = s) = P (W2 > t)

= P (no flare occurs in (s, s+ t])

= e
��t

.

(6)

The cdf for W2 is that of an exponential
distribution, so the waiting time W2 follows
an exponential distribution with parameter �.
It can then be shown using the independence
assumption that for any Wi, where Wi is the
waiting time between the i � 1 and ith flare,
Wi ⇠ Exponential(�). Thus, if the flare
counts follow a Poisson distribution, the wait-
ing times will follow an exponential distribu-
tion, and flare occurrences can be modeled by
a Poisson process. If the waiting times between
flares follow an exponential distribution, does
this imply the flare counts follow a Poisson dis-
tribution? Answering this is not trivial, but it
can be shown to be true through the following.
If Wi denotes the waiting time between

the i � 1 and ith flare, where Wi ⇠
Exponential(�), let Tn be the time at which
the nth flare occurs and

Tn =
nX

i=1

Wi where n � 1. (7)

The sum of the n exponential distributions
results in Tn ⇠ gamma(n,�). The pdf of Tn is
given by

fTn(x) = �e
��x (�x)

n�1

(n� 1)!
for x � 0 (8)

Notice that for n = 1, T1 ⇠ Exponential(�)
[5].

Now, to demonstrate that N(t) ⇠
Poisson(�t), we follow the proof for Theorem
9.1.1 by Ross 2019 [15]. Consider that the
number of flares that occur at or before time t

is at least n if and only if the nth flare occurs
at or before time t, written as

N(t) � n , Tn  t. (9)

This implies that

P (N(t) = n) =

P (N(t) � n)� P (N(t) � n+ 1)

= P (Tn  t)� P (Tn+1  t)

=

Z t

0
�e

��x (�x)
n�1

(n� 1)!
dx

�
Z t

0
�e

��x (�x)
n

n!
dx.

(10)

This can be simplified by rearranging the in-
tegration by parts formula,

R
udv = uv�

R
vdu,

to be uv =
R
udv +

R
vdu. If u = e

��x and

dv = �e
��x (�x)n�1

(n�1)! dx, this results in

e
��t (�t)

n

n!
=

Z t

0
�e

��x (�x)
n�1

(n� 1)!
dx

�
Z t

0
�e

��x (�x)
n

n!
dx,

(11)

completing the proof.
The preceding work shows that if the wait-

ing times between flares follow an exponential
distribution, their sum, the time for the nth
flare to occur, will follow a gamma distribu-
tion. The number of flares n that occur at or
before time t, N(t), then follows a Poisson dis-
tribution. This will be important to know in
the following sections on modeling flare occur-
rences through a Poisson process.

4 Evaluating Goodness of Fit

In attempting to model flare occurrences us-
ing a Poisson process, we must verify that
flare counts follow a Poisson distribution
or that their waiting times follow an ex-
ponential distribution. We do this using
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probability-probability (P-P) plots on a case-
by-case basis to visualize the fits, while also
utilizing simulation-based versions of both
the Kolmogorov-Smirnov (KS) test and the
Anderson-Darling (AD) test when working
with large numbers of fitted distributions.

4.1 Lilliefors Test

Perhaps one of the most well known and eas-
ily implementable goodness of fit tests, the
Kolmogorov-Smirnov (K-S) test statistic mea-
sures the absolute value of the maximum dis-
tance between the theoretical cdf F and the
empirical cdf Fn. It is used to test the good-
ness of fit of a distribution to sample data and
the test statistic is given by

D = max
x

|Fn(x)� F (x)|. (12)

In conducting the K-S test, we assume that
the observed data follows a given theoretical
(null) distribution under the null hypothesis.
We set our significance level to ↵ = 0.05 and if
we obtain a p-value below this threshold, we re-
ject the null hypothesis and have significant ev-
idence to suggest that the observed data does
not follow the distribution defined under the
null hypothesis. The validity of this test is de-
pendent on how the null distribution is defined.
Often, in empirical studies, the parameters of
the null distribution cannot be specified a pri-
ori but need to be estimated from the sample.
This estimation-based specification of the null
distribution is used to conduct the K-S test.
As a consequence, the distribution of the K-S
test statistic changes and the way the p-value
was computed can no longer be used [11].
Since we estimate the parameters from our

sample, we must employ alternative methods
to properly utilize the K-S test. We imple-
ment the Lilliefors test, which is a simulation-
based method of the K-S test when defining
the null distribution with estimated parame-
ters. The Lilliefors test has been shown to have
more power than the regular K-S test, though
it is more computationally demanding. The
Lilliefors test is performed as follows:

1. Estimate the parameters ✓̂0 of the given
distribution from the observed sample of
size n.

2. Calculate the K-S statistic D0 whose null
distribution F0 is evaluated at the esti-
mated parameters ✓̂0.

3. Draw a random sample of size n from F0.

4. Estimate the parameters ✓̂i from this new
random sample.

5. Calculate the K-S statistic Di whose null
distribution Fi is defined by the estimated
parameters ✓̂i.

6. Perform steps 3. through 5. 10,000 times
(i = 1, . . . , 10, 000).

7. Calculate the proportion of Di � D0.
This is the new p-value for the K-S statis-
tic D0.

If the new p-value is less than the signifi-
cance level ↵, we have significant evidence to
suggest that the observed data does not follow
the null distribution. We choose to implement
the Lilliefors test over the regular K-S test in
our analysis because it has more power and the
correct type I error rate. See Section 4.3 for a
power analysis.

4.2 Corrected Anderson-Darling (A-

D) Test

The Anderson-Darling (A-D) test is a test used
to determine the goodness of fit of a given dis-
tribution to a sample. In testing for normality,
the A-D test has been shown to be a power-
ful test and has similar power to that of the
Shapiro-Wilks test [14]. The test statistic is a
modification of the Cramér-von Mises (CVM)
test, where the weight function in the A-D test
gives more weight to the observed values in the
tails of the distribution. The A-D test statistic
is given by

A
2 = n

Z 1

�1

(Fn(x)� F (x))2

F (x)(1� F (x))
dF (x), (13)
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where F is the specified theoretical (null)
cdf, Fn is the empirical cdf, and [F (x)(1 �
F (x))]�1 is the weight function. Under the
null hypothesis for this test, we assume that
our sample came from the specified null dis-
tribution. If the p-value is below our signifi-
cance level, ↵ = 0.05, then we reject the null
hypothesis and have su�cient evidence to sug-
gest that the null distribution is not a good
fit to the observed data. Caution is advised
when using this test, just as with the K-S test.
The distribution of the test statistic changes
when the null distribution is specified by es-
timated parameters from the sample. Braun
proposed a method for conducting the K-S test
that accounts for estimated parameters, but it
requires large sample sizes and we show it per-
forms poorly through a power analysis [4].
Instead, we implement the same steps of the

Lilliefors test given in Section 4.1 but with
the Anderson-Darling test statistic. After con-
ducting a power analysis, we have shown that
the Lilliefors-based method of conducting the
A-D test has the highest power. We choose
to rely on this version of the A-D test1 as our
primary goodness of fit test, with the Lilliefors
test being a sanity check. Implementing both
of these tests alongside P-P plots gives us a
robust way of evaluating the goodness of fits
of the Poisson and exponential distributions to
the observed solar flare count and waiting time
distributions, respectively.

4.3 Power Analysis

We are interested in utilizing the goodness
of fit test with the most power when testing
for an exponential distribution. To do so, we
perform a power analysis of the Kolmogorov-
Smirnov test, the Lilliefors test, Anderson-
Darling test, the Braun-Adjusted Anderson-
Darling test, and the corrected Anderson-
Darling test. In conducting the power analysis,
we simulate data drawn from several distribu-
tions, then fit an exponential distribution to
the simulated data. We then examine the per-

1
We refer to this as the ”corrected A-D test” for the

remainder of the paper.

formance of each test to determine their power.
After considering the simulation-based meth-
ods, we conduct over 2.7 billion simulations.

4.3.1 Goodness of Fit Tests

The Kolmogorov-Smirnov test and the
Anderson-Darling test are two well known
goodness of fit tests that are easily imple-
mentable in various situations. However, it is
necessary to test their power before relying
on their results for inference, especially when
defining the theoretical (null) distribution
using estimated parameters from a sample.
We outline the K-S test, A-D test, and
corresponding modifications to these tests in
this section.

Komlogorov-Smirnov (K-S) Test The
K-S test statistic measures the absolute value
of the maximum distance between the theoret-
ical cdf F and the empirical cdf Fn. The test
statistic is given by

D = max
x

|Fn(x)� F (x)|. (14)

The null and alternative hypotheses of the
K-S test are given by,

H0 : Sample follows null distribution

Ha : Sample does not follow null distribution

If D is above the threshold of the 1 � ↵

quantile, where ↵ is the designated significance
level, then we reject the null hypothesis.

Lilliefors Test When the parameters of the
null distribution are specified from a sample,
the distribution of the K-S statistic changes
and the way the p-value is regularly computed
can no longer be used. The Lilliefors is a
simulation-based method of the K-S test when
defining the null distribution with estimated
parameters. Under the null hypothesis, we as-
sume that the sample follows the null distri-
bution. If the new p-value we calculate is be-
low ↵, then we reject the null hypothesis. The

9



steps taken to perform the Lilliefors test are
outlined in Section 4.1.

Anderson-Darling (A-D) Test The
Anderson-Darling (A-D) test is a modification
of the Cramér–von Mises (CVM) test, where
the weight function in the A-D test gives
more weight to the observed values of the
distribution. The A-D test statistic is given
by

A
2 = n

Z 1

�1

(Fn(x)� F (x))2

F (x)(1� F (x))
dF (x), (15)

where F is the specified theoretical (null)
cdf, Fn is the empirical cdf, and [F (x)(1 �
F (x))]�1 is the weight function. Under the
null hypothesis for this test, we assume that
our sample came from the specified null distri-
bution. If A2 exceeds the 1� ↵ quantile, then
we reject the null hypothesis.

Braun-Adjusted A-D Test The A-D test
is subject to the same issues as the K-S test
when the null distribution is specified by esti-
mated parameters from a sample. When con-
ducting the regular A-D test, we utilize the
ad.test function from the goftest package in
R. This function allows the user to indicate
if the parameters provided for the null dis-
tribution are estimated from the sample. If
this is indicated, then the function implements
the Braun-adjusted A-D test to adjust for es-
timated parameters. We choose to not outline
the methods of conducting this test in this pa-
per, but the null and alternative hypotheses
are the same as the A-D test.

Corrected A-D Test An alternative to the
Braun-Adjusted A-D test is used a simulation-
based version of the A-D test. We conduct this
corrected A-D test in the same way as how the
Lilliefors test is conducted, outlined in Section
4.1, except we implement the A-D test statistic
instead. Under the null hypothesis, we assume
that the sample follows the null distribution. If
the new p-value we calculate is below ↵, then
we reject the null hypothesis.

4.4 Procedures

We use Monte Carlo methods to evaluate the
power of the K-S test, the Lilliefors test, A-
D test, the Braun-Adjusted A-D test, and the
corrected A-D test for an exponential distribu-
tion in this power analysis. We set the level of
significance ↵ to 0.05 for all the tests we con-
duct. The null and alternative hypotheses of
the tests are given by

H0 : Sample follows null distribution

Ha : Sample does not follow null distribution.

To determine the power of each test, we
simulate data drawn from 4 distributions
for 17 sample sizes ranging from n = 10
to n = 200. The four distributions are:
Exponential(� = 0.5), Weibull(k = 1.4,� =
2.5), Lognormal(µ = 0.1, �

2 = 0.6), and
Gamma(a = 2, s = 0.5). For each distribution
and sample size, we draw a total of 10,000 sam-
ples and conduct calculate all the test statistics
for all simulated samples. Including the simu-
lations in the Lilliefors and corrected A-D test,
we perform the tests on 2.7 billion simulations.
To save an immense amount of time and better
utilize available computational power, we im-
plement parallel processing using the parallel
package in R and the run time is only about
27 hours.

4.5 Power Analysis Results

The power of each test is determined by sam-
ple size and the distribution in which the sim-
ulated sample was drawn from. At all sample
sizes, the power of each test is higher when
the simulated sample was drawn from a distri-
bution that di↵ers more from the exponential
distribution. We can determine the type-I er-
ror rate of the tests when ↵ = 0.05 by finding
the percent of tests that result in a rejection
of the null hypothesis for samples drawn from
the exponential distribution. As seen in Fig-
ure ??, the type-I error rate of the Lilliefors
and corrected A-D test is approximately 5%
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for all sample sizes. The regular K-S and A-D
tests are highly conservative, committing type-
I errors less than 1% of the time for all sam-
ple sizes. The Braun-Adjusted A-D test ap-
proaches about 3.75% as the sample size in-
creases, so it is also conservative.
For samples drawn from non-exponential

distributions, we find that the corrected
Anderson-Darling test has the highest power
at all sample sizes, closely followed by the Lil-
liefors test. The Braun-Adjusted A-D test per-
forms very poorly, having a power of about 2%
power at all sample sizes. The K-S test and the
A-D test are very close in power for all sam-
ple sizes. However, the K-S test tends to have
more power at low sample sizes, eventually be-
ing taken over by the A-D test. The results
of the tests for an exponential distribution for
samples drawn from the 4 di↵erent distribu-
tions are given in Figure 7, Figure 8, Figure 9,
and Figure 10.
As previously mentioned, the power of each

test is higher for all sample sizes when the sim-
ulated sample was drawn from a distribution
that di↵ers more from the exponential distri-
bution at all sample sizes. For example, the
lognormal distribution we draw from di↵ers the
most from the exponential distribution, so the
tests have high power at even lower sample
sizes. Alternatively, the Weibull distribution
we draw from is the closest to the exponen-
tial distribution, so the tests only gain more
power at higher sample sizes. We conclude
that the corrected Anderson-Darling test has
the highest power, closely followed by the Lil-
liefors test, both being robust enough for use
at sample sizes of about about 50.

5 Results

5.1 Distribution of Flare Counts By

Year

Historically, solar physicists have fit a Poisson
distribution to solar flare count data over dif-
ferent time intervals, often making the assump-
tion that it constitutes a good fit. We investi-
gate this in depth because if a Poisson distribu-

tion is appropriate, then we are able to model
flare occurrences through a Poisson process. If
we can model flare occurrences this way, then
we may take full advantage of the many nice
properties of a Poisson process and use the
physical framework of self-organized criticality
for solar flares [2]. However, one of the major
assumptions of a Poisson process is that the
rate of occurrences is stable, which is evidently
not the case as seen in Figure 11. If the Pois-
son distribution is not a good fit, it has several
implications on modeling approaches and on
understanding the physics of solar flares.
Our approach to fitting to the GOES flare

occurrence data is to treat each year as its own
dataset. Using by-year data is common prac-
tice for astronomers, but the assumption that
the rate parameter must be stable throughout
each year is doubtful. Admittedly, the time
unit of a year is completely arbitrary relative
to the dynamics of the sun, but it is a nice
unit that humans are familiar with. To fit the
Poisson distribution to by-year data, we find
the number of flares that occur every ten days
within each year, then fit a Poisson distribu-
tion to the distribution of 10-day counts within
each year. Other recent approaches to study-
ing flare occurrences, specifically their waiting
times, use a non-stationary Poisson process,
which allows for a continuous change in the
rate of occurrence parameter � throughout so-
lar cycles [10][1]. These approaches are more
sophisticated and take into account the unsta-
ble rate of occurrence, but do not consider the
grouping of flares that we take into consider
later in this chapter. Nevertheless, using by-
year data is an easily interpreted and common
approach taken by solar physicists to study the
dynamics of the sun over time.

5.1.1 Overdispersion

Using the GOES data from 1997 to 2019,
we break the 365 calendar days for each
year into k = 37 bins of length 10 (e.g.
(0, 10], . . . , (360, 370]). For each year, we count
the number of flares that occurred within all of
the 10-day periods. We then filter out a total
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Figure 7: Power of tests for exponential for the simulated samples from an exponential distribution.
The power in this case is the type-I error rate, where ↵ = 0.05. The corrected A-D test and the
Lilliefors have the expected error rate of 5%, whereas the other tests are conservative.

Figure 8: Power of tests for exponential for the simulated samples from an Weibull distribution.
The Weibull distribution di↵ers the least from the exponential distribution, so the power for all
tests does not get su�ciently high until larger sample sizes. The corrected A-D test has the highest
power in this case, having considerable power at a sample size of 50.
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Figure 9: Power of tests for exponential for the simulated samples from a gamma distribution. The
corrected A-D test has the highest power in this case, having considerable power at a sample size
of 40. The Braun-Adjusted A-D test performs terribly, being much too conservative.

Figure 10: Power of tests for exponential for the simulated samples from a lognormal distribution.
The lognormal distribution di↵ers the most from the exponential distribution, so the power of all
tests quickly increases as sample size increases. The corrected A-D test has the highest power in
this case, having considerable power at a sample size of 15.
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Figure 11: Monthly flare counts throughout solar cycles 23 and 24.

of 17 observations that occurred on February
29 of the leap years to keep the bins consis-
tent. In addition, we remove any flares that
occurred in the year 1996 because we only have
data starting from the end of July 1996.
Let a random variable Nj be the number

of flares that occur every 10 days in year j,
j = 1997, . . . , 2019 . If Nj follows a Poisson
distribution then its pmf is given by

PNj (Nj = nj) =
e
��j�

nj

j

nj !
,

where nj = 0, 1, 2, . . . and �j > 0.

(16)

Here, nj is the number of flares that oc-
curred in a 10-day period in year j and �j is
the rate of occurrence (flares per 10 days) for
year j. If Nj follows a Poisson distribution,
then the occurrences of flares in year j follow
a Poisson process.
We fit the Poisson distribution to the 10-day

count data for each year j using the maximum
likelihood estimate for the rate of occurrence
�j . The MLE is given by the average of the 37

10-day counts in year j, �̂j = 1
37

P37
i=1 xi. As

seen in Figure 11, the observed 10-day counts

vary considerably throughout the solar cycles,
even within a given year. The result is an
overdispersed observed distribution relative to
what is expected under Poisson. This overdis-
persion is also demonstrated in the P-P plots in
Figure 12, where the points tend to dip below
the identity line and do not stay within the
confidence bands. To further prove the poor
goodness of fit of the Poisson distribution to
this data, we conduct the corrected A-D test
and Lilliefors test2 We find that the the Pois-
son distribution is not a reasonable fit for 100%
and 97% of years according to the corrected A-
D test and Lilliefors test, respectively.
The results of both the visual interpretation

and formal tests convincingly show that the
Poisson distribution is not a reasonable fit to
by-year 10-day flare count data. If binnings
other than 10-day bins are used for counts,
or even other time intervals besides years, the
Poisson distribution is still not a reasonable fit
and the observed distributions are still overdis-
persed. This suggests that flare occurrences

2
Note that we do not conduct a power analysis for

testing for the goodness of fit of a Poisson distribution.

However, it is quite obvious that the Poisson is not

reasonable in almost all cases anyhow.
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Figure 12: P-P plot of the fitted Poisson distributions for each year. We observe that many of the
points for each year are outside the confidence bands and tend to dip below the 45� line, so the
observed distribution within each year is overdispersed.
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cannot be modeled by a Poisson process. The
overdispersion is a result of the solar cycle,
which quite clearly has a relationship with the
number of flares occurring. However, before
ruling out a Poisson process it is important to
consider the fact that flares tend to occur in
spatial groupings on the sun, specifically in ac-
tive regions.

5.2 Solar Flare Occurrences Within

Active Regions

Active regions are places where the magnetic
fields emerge from inside the sun, which is the
result of the process of magnetic field lines
”entangling” throughout the solar cycle [7].
The structure of the magnetic field changes
throughout the cycle, resulting in the number
of active regions changing. Since flares tend to
occur in these regions, it follows that as the
number of active regions increases, then the
number of flares increases, and vice versa. In-
vestigating flare occurrences within active re-
gions, rather than on an aggregate level, may
be the key to understanding the generative
processes of solar flares.
Active regions are unique in several ways, so

they should not be treated as identical. Spa-
tially, active regions di↵er in their size and
their latitudes on the sun3. Active regions are
also unique in their temporal characteristics, as
they occur at di↵erent times and last for di↵er-
ent lengths of times. Additionally, the number
of observed flares within active regions varies
to a great extent.
The qualities of these active regions may dif-

fer, but the physical laws that govern their dy-
namics remain the same. Thus, the process
of flare occurrences should be similar through-
out active regions, so studying each active re-
gion individually can lead to insights into how
flares occur and may explain the overdisper-
sion in flare counts observed in the aggregate.
We attempt to determine the appropriateness

3
We recommend looking up ”The Butterfly Dia-

gram” in relation to active regions, solar flares, and

sun spots. It is a beautiful graphical visualization of a

physical phenomenon.

of a Poisson process for modeling flares within
active regions. Since the length of time active
regions last di↵er, fitting a Poisson distribution
to count data within active regions is di�cult.
Instead, we fit an exponential distribution to
the waiting times within active regions. As
proven in Section 3.1, if the waiting times be-
tween flares follow an exponential distribution,
then flares can be modeled through a Poisson
process.

5.2.1 Distribution of Waiting Times

We define the waiting time as the di↵erence in
time between the start times of two consecu-
tive flares. We choose to use the starting time
of flares in defining the waiting times because
the interpretation is intuitive, consistent with
the Poisson process, and the accuracy of start
times measurements is reasonable, even when
compared to using the peak times of flares.
The accuracy of the measured start times of
flares is within about one minute, except when
flares occur at close times. In this case, the
start time of two flares near each other in time
is harder to determine, but only 14.5% of wait-
ing times are at or below one minute for all
observed flares, including those not assigned
to an active region, so this should not pose a
major issue.
Let the random variable Wr, r = 1, ..., 1518,

be the waiting time between two consecutive
flares within the same active region r. If Wr

follows an exponential distribution, then its
pdf is given by

fWr(Wr = wr) =

(
�re

��rwr , if wr � 0

0, wr < 0.
(17)

Here, �r, �r > 0, is the rate parameter for
active region r and can be interpreted in the
same way as that of the Poisson distribution,
except here we define it as the number of flares
per hour. To fit the exponential distribution
to the observed waiting times for each active
region we find �̂r by maximum likelihood es-
timation. For the exponential distribution it
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is given by �̂r = 1
w̄r

, where w̄r is the mean
waiting time within active region r.
We fit the exponential distribution to all

1,518 active regions in the GOES database,
but are only interested in regions with a su�-
ciently large number of flares. After conduct-
ing a power analysis of the Lilliefors test and
corrected A-D test, we find that a sample size
of 50 results in the tests having enough power
to be reliable. For this reason, we choose to
focus on active regions with at least 50 flares.
There are only 52 active regions with at least
50 flares, which is quite a small number. We
also choose to fit to active regions with at least
30 flares, increasing the number of active re-
gions to 142. There is a loss of power of the
tests at that sample size, so the results for ac-
tive regions with less than 50 flares should be
considered with caution.
After conducting both tests on the distribu-

tions of waiting times for active regions, we
find that an exponential distribution is a rea-
sonable fit for the distribution of waiting times
in 48% of active regions with at least 50 flares
according to the corrected Anderson-Darling
test. By the Lilliefors test, the exponential
distribution is a reasonable fit for 52% of ac-
tive regions. The numbers do increase when we
consider active regions with 30 or more flares.
The exponential distribution is a reasonable fit
for 51% of active regions by the correct A-D
test and 58% by the Lilliefors test. The results
are summarized in Table 2.
To investigate the distributions of the wait-

ing times of some active regions, we select 20
active regions with between 30 and 35 flares.
The P-P plots for the exponential fits for these
active regions are given in Figure 13. There are
definitely some active regions where the expo-
nential distribution constitutes a very good fit,
but others where it is a very poor fit. It seems
that the observed distributions of the waiting
times tend to be overdispersed, not underdis-
persed, for the cases where the exponential dis-
tribution is not a reasonable fit.
We investigate relationships between several

characteristics of active regions and whether
or not an exponential distribution was a good

fit for that region. We find that there is not
relationship with the goodness of fit with the
number of flares in an active region, the rate
parameter, and the average latitude of the ac-
tive region. In addition, we observe no sign
of a temporal relationship or relationship with
the total energy output of active regions.

6 Conclusion

6.1 Discussion of Results

The results of our analysis on the 10-day
counts for each year throughout solar cycles
23 and 24 show that a Poisson distribution is
not a reasonable fit, as there is too much vari-
ation in the counts between and within years.
After investigating the distribution of waiting
times within active regions, the results suggest
all active regions cannot be modeled through a
Poisson process. However, there are about 50%
of active regions where the flares can be mod-
eled through a Poisson process. This mixture
is interesting, as it could suggest that there
are physical processes that change the way in
which flares occur in di↵erent active regions.
One major assumption of the Poisson process
is that events are independent, so we must as-
sume this about flares within active regions.
When a flare goes o↵ the structure of the mag-
netic fields in the area are altered, which could
have an e↵ect on other flares going o↵ in the
local corona [7]. This could be one reason for
the mixed results for the by-active region fits.
Whether or not we assume that the flares

within active regions follow a Poisson process,
we are able to explain the overdispersion seen
in the 10-day count data. This overdisper-
sion is caused by the random accumulation of
flares from multiple concurrent active regions
at any given point in time. Suppose flare oc-
currences within these active regions follow a
Poisson process, then their counts will follow
a Poisson distribution. If we sum these distri-
butions, the resulting distribution will also be
Poisson distribution with a new rate parame-
ter. So for any time segment the aggregated
count data should follow a Poisson distribu-
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Test Minimum # Flares # Active Regions % retained

Corrected A-D 50 52 48%
Lilliefors 50 52 52%

Corrected A-D 30 144 51%
Lilliefors 30 144 57%

Table 2: Results of correct A-D and Lilliefors tests for exponential distribution of waiting times
within active regions.

Figure 13: P-P plot of the fitted exponential distributions to flare waiting times within 20 active
regions with 30 to 35 flares. For some of the plots, the points line up well to the 45� line, while for
others the distributions are overdispersed. The red confidence bands indicate that the corrected
A-D test gave evidence to suggest that the exponential distribution was a poor fit.
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tion. However, this is only when the active re-
gions occurring together are always the same.
Instead, active regions appear and dissipate af-
ter di↵ering lengths of times, with the total
number appearing increasing with the solar cy-
cle. Because of this, there is a random number
of active regions at any given moment, each
producing its own flares at its own rate.

Over the course of 10 days, there might be
5 di↵erent active regions that produced flares,
but for only 5 of those days 3 were active and
the other days the other 2 were active. Al-
though the flare counts within active regions
may be distributed as Poisson, the accumula-
tion over these 10 days results in a changing
rate parameter because of the changing num-
ber of active regions. This idea can be seen
in the the observed 10-day count data, shown
in Figure 14. The graph plots the latitude of
the active regions that occurred in 2013, with
the length of each line segment giving the time
for which the active regions were active. The
color of the line segments are given by the log
of the rate parameter for each active region.
Several times throughout 2013 the active re-
gions overlap, which would result in changing
rates if their counts all followed a Poisson dis-
tribution.

While the results suggest that flare occur-
rences do not follow a Poisson process for
about half of the active regions, the reason
for overdisperson in the aggregated flare count
data presented still reveals insight into why
the number of flares occurring vary so much.
We choose to make the assumption that flares
follow a Poisson process for the purposes of
modeling flare energy distributions, so this
should be taken into account when consid-
ering the analysis to be performed later on.
A model that allows for more variation, such
as the Weibull or Negative Binomial distribu-
tions, might be more appropriate for flare data.
These results have major implications for the
area of solar physics research because result
of using a non-Poisson process to model flares
could entirely change the understanding of the
physics of solar flares.

6.2 Limitations

Given the fact that the equipment and algo-
rithm are not perfect at detecting flares, it is
expected that there are some limitations to our
data. We identify the major limitations in four
specific forms. The first limitation is one of
missing data resulting from the location of our
satellites. Due to the satellites being in orbit
around earth, they only observe one side of the
sun’s disk at any given point in time. This re-
sults in the satellites not recording flares that
occur beyond the limbs of the observed disk.
This loss of data is consistent.

The second is caused by sensitivity limita-
tions of the X-Ray Sensors on the GOES satel-
lites. While the equipment has become more
sensitive with newer iterations, the sensors are
not perfect at detecting the change in flux
across all magnitudes. This makes it di�cult
to observe X-ray events that we may other-
wise define as flares because they have such
a low flux. The result is many undetected
flares at low fluxes. The third limitation oc-
curs when flares of higher fluxes increase in
frequency around the solar maximum, result-
ing in low flux flares being harder to di↵erenti-
ate from the flux originating from the high flux
flares. In a similar fashion, the fourth limita-
tion is an issue of detecting flares that occur in
quick succession. When flares occur close to-
gether, it may be hard to make out the peaks
of all the flares. This also makes it di�cult to
obtain accurate estimates of the start and end
times of the flares. These four limitations are
some of the contributing factors to the strug-
gles of collecting accurate data on solar flares,
especially when attempting to detect low flux
flares.

6.3 Moving Forward

The way in which we decide to model flare oc-
currences is important in understanding the
generative process of flares, their underlying
physics, and in developing models for the dis-
tribution of flare properties, such as their total
energy. These properties tend to follow power-
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Figure 14: The existence of several active regions lap at any given moment, each with their own
rate parameter. The length of each segment represents the time for which the active region lasted,
with the color corresponding to the log of that region’s rate parameter �

laws and we use several statistical methods,
such as Maximum Likelihood and the Maxi-
mum Product of Spacings methods, to fit this
distribution to the flare data.
Moving forward, we hope to

• Conduct an even more robust power anal-
ysis.

• Investigate new ways to model flare oc-
currences (besides through a Poisson pro-
cess).

• Apply these results to modeling of power-
law distributions for solar flare properties

• Further develop a maximum likelihood
method to fit a power-law to flare energy
distributions.
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