
Survey Designs for Distance Sampling:
A Study of Zebra Mussels

Abstract

The zebra mussel has infested hundreds of lakes across North America. Our group worked to
develop the best lake sampling methods to determine the abundance of zebra mussels in infested
lakes. Using lake survey data, we implemented the principles of line transect distance sampling to
fit a model that describes the probability of detection for zebra mussels in a given lake. Then, using
the Horvitz-Thompson estimator, we made inferences about the populations. We then explored
different survey designs to determine which would most accurately predict the population abun-
dance and reduce error. Using the DSsim package in R (Marshall, 2017), we ran simulations on
generated populations, constructing different survey designs under various conditions (population
size, number of transects, and hotspot presence). Finally, we conducted an experiment to analyze
the relationship between time and detection. By evaluating the error, bias, and predictive statistics,
we provide ecologists recommendations on an optimal zebra mussel sampling design.



1 Introduction

Zebra mussels (Dreissena polymorpha) are small freshwater shellfish, named for the
zebra-striped pattern found on their shell. Native to the Black, Caspian, and Azov Seas, zebra
mussels were most likely introduced into Lake Erie in the late 1950s as a result of the opening of
the St. Lawrence waterway (Hebert, 1989). Zebra mussels have managed to spread throughout
the Great Lakes and down the Mississippi River, infesting hundreds of lakes across North
America. Able to survive out of water for several days, they attach themselves to the bottom of
boats and spread to new lakes via roadways on boat trailers (USGS). During their reproductive
cycle, a single female zebra mussel can lay over one million eggs a year, making any lake with
even a couple zebra mussels in immediate danger of infestation (Virgina DGIF).

Nonnative species are introduced into ecosystems and habitats all the time. The invasive
zebra mussels, however, have a particularly detrimental effect on North American freshwater
ecosystems. In many infested lakes, zebra mussels have become so pervasive that they easily
out-compete other species for nutrients. Since the introduction of zebra mussels, zooplankton
biomass has substantially decreased, impacting food-web interactions and reducing biodiversity
(Miller 2007). Similarly, the zebra mussel has strained the survival of the native mussel, Amblema
plicata, causing extirpation in some lakes (Hart 2001). As zebra mussels filter water, they remove
particles, increasing the water clarity (Qualls 2007). At first, this effect may be viewed as
beneficial. The increased water clarity, however, encourages extensive algae growth, particularly
of the nuisance algae, Cladophora glomerata (Limburg 2010). These algal blooms can lead to
dead zones in lakes and foster the growth of toxic bacteria (Vanderploeg 2001).

To mitigate the effects of this invasive species, managers and scientists need an accurate
estimation of the population of zebra mussels in a given lake. Lakes that contain too many
mussels are very difficult to treat, while lakes with too few mussels are not worth the extensive
effort it would require to eliminate the population. For an infested lake to be an ideal candidate for
treatment, the population of zebra mussels must between these two levels of infestation, a “sweet
spot.” To accurately estimate a population, there must be a standardized method of surveying
these lakes. Our research investigated the strengths and weaknesses of different survey
designs. To answer the question regarding proper sampling methods, we took advantage of
technology and ran simulations of different survey designs, as we could not experiment with
sampling designs within lakes. We used data of already surveyed lakes from a research group at
the University of Minnesota, which we fit models to estimate the population of that lake. We then
used these estimates to build fake populations of zebra mussels for simulations of different
survey designs and compared results. Another question of interest was the cost of sampling
these lakes. One major factor in cost is the time spent on a transect. To determine how time
would affect detection, we ran an experiment to mimic sampling zebra mussels and were able to
draw conclusions on the relation of time and the accuracy of predicting a population. In this
paper, we will walk through the steps we completed to achieve this task and discuss our findings.

2 Gathering our Data

Our data was gathered as part of a research project led by Dr. John R. Feiberg and Dr.
Michael McCartney at the University of Minnesota, funded by the Minnesota Aquatic Invasive
Species Research Center. Due to the lack of standardized sampling methods for zebra mussels,
their project focused on developing survey methods for estimating population and abundance.
The research team created a survey design using distance sampling techniques which a team of
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divers implemented in 12 lakes throughout central Minnesota. In this section, we will give a brief
overview of distance sampling and summarize the data that was used for the rest of this project.

2.1 Distance Sampling

The majority of this paper focuses on distance sampling. Specifically, we were interested in a
design using line transects, a common sampling technique for investigating wildlife densities. In
such a design, observers set up a series of line transects, usually using a systemic design. Then,
the observer travels along the transect, whether it be by walking, driving, flying, or in our case,
swimming, and counts the total number of animals detected as they travel the line. For each
detection, the observer records the perpendicular distance to the animal from the transect and
the distance of the animal along the transect. Other variables can also be recorded, including
time of detection, habitat, size of animal or cluster of animals, number of animals in a cluster, and
type of substrate on which the animal was found.

Transect sampling operates under four main assumptions: animals are distributed
independently of the transects, objects on the transect are detected with certainty, distance
measurements are exact, and objects are detected at their initial location.

To fit the first assumption, the animals, or in our case mussels, are distributed on the lake
floor independent of the transects. Therefore, as an observer looks within the area of the survey,
the mussels should be evenly and independently distributed across the transects. The second
assumption indicates that when swimming on the transect, divers must see all of the mussels
located on the line. The third and fourth assumption state that the mussels found are measured
exactly in the original location where the observer finds it.

Figure 1: Visualization of a single line transect. Area (a) shown in gray

Before moving into the mathematics of distance sampling, there are important terms to
define. First, we have w, which is the truncation distance on each side of the transect. Next, l is
the length, or effort, of the transect. The area of the surveyed region can be defined as a = 2wL
where L is the sum of all the transect lengths (L =

∑K
i=1 li), K is the number of transects in the

survey, and A represents the area of the region of interest. Generally, this region is the area of
the entire lake. The relationship between some of the parameters is visualized in Figure 1.

2



2.2 Our Data

Of the twelve lakes surveyed by the University of Minnesota, only two produced adequate
data for analysis. These lakes, Lake Burgan and Lake Sylvia, are both located in central
Minnesota near the town of Alexandria. Each survey consisted of 24, 30 meter transects
systematically placed around the lake, perpendicular to the shore. The transects are arranged
corresponding to three “zones” of high, medium, and low infestation. Because the team believed
that more mussels live in an area called the “infestation zone”, the team surveyed more heavily
there, placing down 8 transects 3 meters apart. Next, the team placed 3 transects 3 meters apart
150 meters to the left and right of these infested regions. Finally, they placed the remaining 10
transects evenly around the rest of the lake, which is believed to have fewer mussels.

The divers were instructed to swim directly above the transect line, recording every cluster of
zebra mussels they encountered. When they found what they believed to be a zebra mussel
cluster, they swam out, inspected what kind of substrate it was on, the number of zebra mussels
in the cluster, the distance perpendicular to the transect, and various other variables. We used
the Lake Burgan data for the bulk of our analysis because the research team believed it is the
most accurate representation of an infested lake. This data set contained 52 observations of
zebra mussels, on 18 transects. Additionally, only one observation recorded the cluster to have
two mussels, while all other observations were “clusters” of one. A visual representation of the
transects in the lake can be found in Figure 2.

Figure 2: Lake Burgan and locations of transects

3 Estimating Mussel Abundance and Density

After collecting the data, we needed a way to estimate the abundance and density of the
surveyed region. This was a two step process. First, we estimated the probability of detection for
a mussel using our data and then calculated the abundance of the region. To estimate a
detection probability, we fit our data to a model using maximum likelihood estimation. Using the
parameters from these models, we estimated the total abundance and density of zebra mussels
for the lake using a Horvitz-Thompson estimator. In this section, we will outline this process and
estimate mussel abundance for Lake Burgan. Note that most of the mathematics for this section
come from Buckland, et al. (2015).
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3.1 Different Distributions

To estimate the probability of detection, we begin with an assumption previously stated:
objects on the transect are detected with certainty. If x is the perpendicular distance an object is
from the transect, then let g(x) define the detection probability with g(0) = 1. Now, we assume
that as distance increases, x > 0, the probability of detection decreases. Three common models
are used to describe g(x). The first model, the uniform distribution, assumes perfect detection for
all objects within the transect area (all objects have been found within the transect area). While
this model is simple and easy to work with, it is unrealistic in most scenarios.

The next model, the half-normal distribution, can be written as

g(x) = exp

[
−x2

2σ2

]
, 0 ≤ x ≤ w, (1)

where x is the distance from the transect, w is the truncation distance, and σ is the scale
parameter used to change the shape of the curve. The half-normal maintains the g(0) = 1
assumption but alters the detection function to account for non-perfect detection of objects further
away from the transect. The parameter σ indicates the rate at which the detection decreases.

Finally the hazard-rate model, can be denoted as

g(x) = 1− exp
[
(−x/σ)−b

]
, 0 ≤ x ≤ w, (2)

with the parameters having the same meaning as the half-normal, with the addition of b. This
added variable is a shape parameter that offers even more flexibility in changing the structure of
the model. These basic models explain the way detection probability changes with distance, with
their differences highlighted in Figure 3a.

(a) The half-normal curve with σ = 0.5 (black),
hazard-rate with σ = 0.5 and b = 5 (blue), and
uniform (dashed red) distribution.

(b) Visualization of µ. σ = 0.508, µ = .606, and
w = 1.

Figure 3: Probability of detection distributions

3.2 Estimating Detection Parameters

From these detection distributions, we can fit a function g(x) to our recorded distances and
use a maximum likelihood estimation (MLE) to estimate σ. We need a proper probability density
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function f(x) for the observed distances, however, in order to use MLE methods to estimate the
parameter σ. Here we define f(x) to be f(x) = g(x)

µ , with a normalizing constant µ denoted as
µ =

∫ w
0 g(x)dx.

The normalizing constant µ is the area under the curve g(x). This constant µ is often called
the effective half-width. It is the distance from the transect that divides the population such that
the area underneath the curve past µ is equal to the area above the curve before µ, as seen in
Figure 3b. By searching all the transects up to the truncation distance w, we have effectively
found all the mussels up to distance µ. Additionally, unless w = ∞, µ must be solved numerically.

The functions f(x) and g(x) have the same shape, as they are proportional. To use MLE, we
need f(x) to be a probability density function whose area under the curve is 1, which is satisfied
by the equality above. The majority of the data obtained in this study fit a half-normal distribution,
so we will discuss that example in more detail. Using a maximum likelihood function, we plug in
the half-normal PDF from Equation 1, we then solve for the σ̂ that maximizes our function, which
is given as

σ̂ =

√∑n
i=1 x

2
i

n
when w = ∞. (3)

This estimate is only true if we let w = ∞. Therefore if we add a truncation distance to our
design and use Equation 3 to find σ̂, the result may be underestimated. We utilized the Distance
package in R (Miller, 2017) which can take in truncation distances and uses numerical methods
to give a less biased estimate for σ̂ than Equation 3. Using this value of σ̂ we can derive the
value of µ̂.

Now, we have estimates for both σ̂ and µ̂ to use within our model. The reason we fit a model
for our data is to predict the total population, N̂ , and density, D̂, of our surveyed region. To find
these estimates, we need one last parameter, Pa, the expected proportion of objects found within
the survey area, a. Thus, Pa can be defined as the ratio of µ and w, as such: P̂a = µ̂

w .
In our case, the truncation distance, w = 1, so P̂a = µ̂, making for a simpler analysis. Pa can

also be thought of as the proportion of the 1× w rectangle that is under the curve g(x).
A final parameter of interest is ˆf(0), where the f(x) curve intersects the y-axis. Because

g(0) = 1, we can use the equation f(x) = g(x)
µ and replace it so that ˆf(0) = 1

µ̂ . We will use ˆf(0)
later as it pertains to the coefficient of variation for estimated density.

3.3 Estimating Abundance

Un-biased Estimation Using the estimated parameters for the detection model, we can make
inferences about our population abundance using a Horvitz-Thompson estimator, given as

N̂ =
n∑

i=1

1

pi
(4)

In the simplest case of sampling, simple random sampling, a set of n objects is randomly
sampled without replacement from a population of N objects. The probability that any given
object i is included in the sample is denoted as pi =

n
N . Therefore in a simple random sample,

using the Horvitz-Thompson estimator, we estimate

N̂ =

n∑
i=1

1
n
N

= N (5)
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In simple random sampling, the Horvitz-Thompson estimator is unbiased because pi is known.
However, to implement this estimator for our data, we needed to estimate p̂i, which introduced
bias to our estimates.

Biased Estimation In conventional distance sampling, the estimated detection probability is
written as p̂i =

aĝ(xi)
A where ĝ(xi) is the estimated detection probability of animal i. Given that the

distribution of mussels in the population is uniform, we are able to replace the estimated detection
probabilities ĝ(xi) with an estimate of their mean P̂a.

To estimate p̂i, we have p̂i =
aP̂a
A , where a is the area of the sample plots and A is the size of

the study area. If we define a sample area ak where k ∈ {1, ...,K} the equation can be derived as:

p̂i = P(Zi = 1|i ∈ ak)P(i ∈ ak) = (P̂a)(
a

A
) =

aP̂a

A
(6)

where Zi indicates that mussel i in area ak was detected. Substituting p̂i back into our equation
for N̂ , we find N̂ = nA

aP̂a
.

We can find density by dividing this estimate by the total area of our study area so D̂ = N̂
A .

Because D̂ is a function of area and N̂ , if L is the total length of all transects the estimated
density can be defined as follows:

D̂ =
n

2wLP̂a

(7)

3.3.1 Standard Error of Density

When estimating any parameter it is worth understanding how precise our estimates are.
These errors can be quantified as standard error or scaled as a coefficient of variation. By using
coefficient of variation, we can normalize across simulations or samples to compare precision.
Given the primary focus of transect sampling is to gain insight into the true population of an area,
the standard error of our density, SE(D̂) and coefficient of variation of our density,
CV (D̂) = SE(D̂)

D̂
, will provide a quantitative way to understand a design’s precision. Much like the

relationship between the estimated density and the total population, the relationship for the
standard error can be written SE(D̂) = SE(N̂)

A .
The function used to quantify SE(D̂) is a function of the CV (n/L) and CV (f̂(0)) which is

expressed as

SE(D̂) = D̂

√
[CV (n/L)]2 + [CV (f̂(0)]2 = D̂

√√√√ K
L2(K−1)

∑K
k=1 l

2
k(

nk
lk

− n
L)

2

(n/L)2
+

1

2n
, (8)

where L is the total length of all the transects, K is the number of transects, n is the total number
of mussels found, nk is the number of mussels on the kth transect, and lk is the length of the kth
transect.

The coefficient of variation of D̂ provides a way to analyze the precision of estimates from a
particular survey given a set of parameters. Keeping lk fixed and varying nk as a function of n,
we can examine how CV (D̂) changes with the ratio of n/K and for varying number of transects.
The term n/K can be described as the average number of mussels found per transect. If each
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Figure 4: Simulated plots of the coefficient of variance of the predicted detection for varying number
of total mussels found over the number of transects used

mussel has equal probability of being on a particular transect, n/K can also be written as n̄k. As
we can see from Figure 4, CV (D̂) decreases as n̄k increases. In this example, we calculated
CV (D̂) by generating a random multinomial that gives equal probability to a mussel being on a
particular transect, k. Keeping all else fixed, with all lk set at 30 meters, resulting in L = 30 ∗K,
we can focus on what causes a change in the CV (D̂).

If a goal coefficient of variation for our density estimate for this example were set at 0.05, we
could achieve this value multiple ways. If the survey design consisted of 48 transects, we would
need to observe an average of about 14.8 mussels per transect to reach CV (D̂) = 0.05.
Alternatively, if the design consisted of only 8 transects, this average n̄k would need to increase
to about 78.1 mussels per transect. The exact value of n or nk cannot be fully controlled in reality,
but could be influenced by the precision of the investigator. Generally, the more time spent on a
transect, the increased detection probability resulting in increased detections, or a higher n. In
Section 5 we will discuss the full implication of time as an influence on detection probability and
how time alters half-normal parameters such as σ and µ. Thus, when considering reaching a goal
precision, there is a trade off between the number of transects used and the number of mussels
found for each transect. In a survey, K is determined before the sampling begins, but n is harder
to control. As will be discussed later, there are potential solutions to control for the number of
mussels found within a particular transect area.

3.4 Fitting Our Data to a Model

Using the Distance package in R (Miller, 2017), we easily fit our data from Lake Burgan to a
model which gave us the MLE estimates of σ and its standard error. In addition to this, the
package also gave us the estimate of Pa which can be used to find all the parameters mentioned
earlier. We also received estimates of N̂ and D̂.

After fitting the three types of models, we decided to use a half-normal model where the
truncation distance was 1 meter. In Table 1, we can see the estimated values for all the different
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parameters and their respective SE and CV estimates. Figure 5 displays the fitted model over a
histogram of observed mussel distances from the transect. The points on the line are the
observed distances that correspond to the estimated probability it is found on the y-axis. By
default, the Distance package will give estimations of N̂ for the covered region a, or only the area
of the given transects, which is why the estimate may seem low. We used the density estimate to
calculate N̂A, the estimated population for our region of interest, a 4000× 30 meter2 area
representing a strip of the perimeter of the lake.

Figure 5: Fitted model over histogram of ob-
served distances

Parameter Estimate Std. Error CV
σ̂ 0.508 0.084 0.165

µ̂ = P̂a 0.606 0.075 0.123
ˆf(0) 1.651 0.163 0.099

D̂ 0.090 0.0199 0.222

N̂a 89.584 19.921 0.222

N̂A 10, 760 2, 392 0.222

Table 1: Estimated parameters from the
model

4 Simulations

Through our research, we hoped to determine the optimal survey design to predict N̂ .
Because sampling lakes is costly, time consuming, and we only had data from one survey design,
we decided to take advantage of a package in R called DSsim (Marshall, 2017), which allows us
to run simulations on our own generated populations to see how well different survey designs
perform.

4.1 Overview of our Simulations

Using the estimates from the Lake Burgan model, we were able to generate our own
populations of mussels in an area. We then implemented different survey designs under various
conditions to determine if and how the results would change. We could control region size A,
population size N , number of transects K, detection scale parameter σ, number of strata, and
addition of hotspots (areas of elevated density).

When running simulations, we decided to change only one variable at a time to see how an
alteration in design affected the predictions of the model. The starting simulation had
N = 10, 000, K = 24, σ = 0.7, and an area of 4, 000× 30 meters2 (the size of the survey area we
can extrapolate from Lake Burgan). We based these values off the Burgan analysis estimates,
but chose to use a slightly higher σ value in the majority of our simulations because distance
sampling expert, Stephen Buckland recommends at least 60 to 80 observations in a sample to
have accurate results when estimating model parameters. Therefore, by using a higher σ value
we allowed the n values to be above this range. Like the University of Minnesota’s survey design,
we also ran simulations with different numbers of transects in different areas of the lake. We did
this with a stratified design: the overall area of the lake was constant, but we broke the region into
two equal halves, each 2, 000× 30 meters2. Keeping K constant, we ran simulations with more
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transects in one strata than another. We also looked at how different density values in the two
strata could affect estimates, keeping overall N constant. Finally, we wanted to see the effect of
adding “hotspots” or areas of more concentrated density to our population. Within our
simulations, we could control the size of the hotspot and how dense it was compared to the rest
of the region. We used a general hotspot with a density multiplier of 4 with a 30 meter radius.

4.2 Simulation Structure

For each iteration of a given simulation, N objects are randomly placed according to the
inputed density around the sample area and K transects are then laid down. The first transect is
randomly placed perpendicular to the x-axis at a distance between 0 and the spacing of the
transects. The remaining K − 1 transects are then placed evenly from there. For example, if
K = 24, the first transect will be placed perpendicular to the x-axis between 0 and
4, 000/24 = 166.667. Then each transect is placed 166.667 meters from the previous until K
transects are laid down.

For each transect, any object within 1 meter of the transect (our truncation distance), is given
a probability of detection by plugging in its distance from the transect to a half-normal detection
function g(x) with the inputted σ. Once each object has a probability of detection pi, a Bernoulli
distribution is used with success probability pi to determine whether or not that object was found
along a given transect.

Figure 6 shows this process taking place. Graph (a) shows all objects within 1 meter of the
transect and graph (b) shows which objects were detected and undetected based on their
assigned Bernoulli random value (a red X means it was not observed).

(a) Simulated population for transect (b) Detections for example transect

Figure 6: Simulated population demonstration

Finally, the observed data is fit to a half-normal model where estimates of N̂ are calculated,
just like the Burgan estimates in section 3.4. This process is then repeated for B iterations. For
our simulations, we typically ran B = 300 iterations.

4.3 Simulation Statistics

To compare our sampling design strategies, we looked at N̂ estimates. When B iterations
are run of our simulation, each realization b ∈ {1, 2, . . . B} produces an N̂b. We can find the mean
of all the realizations which we will refer to as ˆ̄N , which is our Monte Carlo simulation estimate of
Ê(N̂) = ˆ̄N = 1

B

∑B
b=1 N̂b.

9



The first criteria for a good sample design that we considered was accuracy. In other words,
how similar were the estimates of our simulation to the actual values ( ˆ̄N vs N )? In our research,
we quantified accuracy by measuring bias. Because we are looking at multiple population
scenarios in our analysis, percent bias was the most logical measure. The formula to calculate
the percent bias of N̂ from a simulation is as follows

% ˆBiasN̂ =
ˆ̄N −N

N
∗ 100% (9)

To compare whether two simulations actually have different values of bias, we needed to look at
the simulation standard error for the estimated percent bias

SEsim =
SD(N̂)√

B
∗ 100%

N
(10)

where SD(N̂) is the SD of the simulated N̂b values. This leads into the second way we
measured the quality of the sampling design: precision. To measure precision we looked at the
SE of our estimates. A smaller SE indicated we had less variability in an estimate. Notice that
since we ran the simulations 300 to 500 times, the SD(N̂) from the simulations can be used to
estimate the SE(N̂),

ŜE(N̂) =

√∑B
b=1(N̂b − ˆ̄N)2

B − 1
(11)

We can use Equation 11 to help determine if Equation 8 calculating SE(D̂) was a good
measure of the true variability of N̂ . We expected that by running many simulations we would get
a spread of N̂b estimates close to the spread of the actual sampling distribution of N̂ . Therefore if
the mean of the SEs calculated for each simulation, denoted as S̄E(N̂) = 1

B

∑B
b=1 SE(N̂b), was

close to the ŜE(N̂), our formulas for SE were accurate estimates of variability.
Just as we reported the estimated percent bias for N̂ , we also found the estimated percent

bias for S̄E(N̂) which is

% ˆBiasSE =
S̄E(N̂b)− ŜE(N̂)

ŜE(N̂)
∗ 100% (12)

The last simulation statistic considered was the coefficient of variation. Because we ran
simulations with different values of N , we needed to normalize our standard errors since a
SE = 5 for a population of 50 is very different than a SE = 5 for a population of 5, 000. Therefore,
we used estimated CV to compare simulations, which, as explained before, CV ( ˆ̄N) = ŜE(N̂)

ˆ̄N
.

CV let us know how precise our estimates were for each simulation. Therefore we wanted
simulations with bias close to 0 and low CV values.

4.4 Simulation Results

4.4.1 Effects of Changing N

The first variable we could change in a simulation was the size of the population N . Table 2
shows how changing the N input affects our simulations. As N increased, % ˆBiasN̂ decreased.
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The % ˆBiasN̂ estimates for N ≥ 5, 000, however, were not significantly different from 0 if we look
at the SEsim. Therefore, increasing N only helped reduce the bias of N̂ to a point, but as long as
the population was large enough, it did not effect estimates. As long as lakes were dense enough
(D ≥ 0.042 in our findings) we could assume we had accurate estimates of N̂ . The more
interesting result that occurred when we change N was what happened to CV (N̂): the precision
of our estimates. In our simulations, CV (N̂) constantly declined as we increased N . Therefore,
in cases of larger N , our estimates were more precise. We can think of the change of CV (N̂) as
a change in the SE of mussels. For a population of N = 10, 000, a .01 change in CV (N̂) was the
same as a 10, 000 ∗ .01 = 100 mussel change in SE. Another important finding from these
simulations was that no matter the value of N , the % ˆBiasSE was negative and increased as N
increased. This means that the SE(N̂) calculated using Equation 8 under-predicted the true
variation observed by running many simulations. This trend continued throughout the simulation
results.

N n̄ ˆ̄N %BiasN̂ SEsim %BiasSE CV (N̂)

1 2, 500 25 2, 867 14.670 1.820 −5.820 0.302
2 5, 000 45 5, 033 0.660 0.980 −4.840 0.218
3 7, 500 68 7, 556 0.750 0.860 −10.630 0.192
4 10, 000 91 10, 208 2.080 0.790 −13.310 0.173
5 12, 500 112 12, 523 0.180 0.700 −15.160 0.157

Table 2: How N affects estimates

4.4.2 Effects of Changing σ

Next we looked at what happened when we changed σ. As noted before, we ran most
simulations with a σ above what we observed in the Burgan data to have most iterations result in
n above Buckland’s suggested threshold. However, we also wanted to compare what would
happen to our estimates if we did use σ = 0.5 as we observed and a low value of σ = 0.2. Table 3
shows the results of these simulations for comparison. For both inputs of N , we see that as σ
increased, the CV (N̂) decreased, making our estimates more precise. This makes sense
because a larger σ means better detectability and therefore better estimates of N̂ , so we would
expect the variance of our estimates to be smaller. Bias on the other hand was a different story.
Changing σ did not seem to have a large impact on % ˆBiasN̂ except in the case of σ = 0.2

resulting in a high % ˆBiasN̂ for N = 7, 500. We can explain this because the n̄ in these
simulations was so low that many of the iterations failed to produce a N̂ since the DSsim
package will only compute if n > 20 for a given run. Therefore since we constructed our N̂
estimate out of only the iterations that had n > 20 when many of the runs did not, our estimate
was larger than the truth. Tying our findings in these runs back to those in section 4.4.1, if N is
large enough, changing σ might not result in a change of % ˆBiasN̂ if the n was still large. Again,
in all cases the % ˆBiasSE was negative meaning we are under-predicting the SE(N̂).

The results from changing both N and σ can be visualized in Figure 7. As we increased
σ > 0.2, % ˆBiasN̂ did not decrease significantly. We see the same result as we increased N ,
above 2, 500 objects.

While these results are interesting, σ and N are not factors that we can explicitly control
when we sample. The lake or area will have a total population we cannot change. While there
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N σ n̄ ˆ̄N %BiasN̂ SEsim %BiasSE CV (N̂)

1 7, 500 0.200 25 8, 051 7.340 1.460 −2.360 0.261
2 7, 500 0.500 54 7, 513 0.170 0.950 −10.230 0.213
3 7, 500 0.700 68 7, 556 0.750 0.860 −10.630 0.192
4 10, 000 0.200 30 10, 118 1.180 1.200 −14.160 0.263
5 10, 000 0.500 72 10, 018 0.180 0.880 −16.690 0.196
6 10, 000 0.700 91 10, 208 2.080 0.790 −13.310 0.173

Table 3: How σ affects estimates

Figure 7: A visualization of how changing N changes Bias

might be ways to influence σ (one of these ways will be discussed in the next section), when
setting up a sample design we do not know the value. While these are out of our control, their
implications on Bias as well as SE are important to understand. If we sample lakes with assumed
smaller populations, or where detectability appears low, our estimates are more variable and less
accurate. We should take this into account when evaluating estimates and know that if we are
predicting a small N̂ for a region, our prediction may not be accurate. Therefore there might be
other ways in which we can change our survey designs to improve estimates. The next set of
analyses will focus on variables in survey designs that we can control.

4.4.3 Effects of Changing Number of Transects K

One parameter we could change in our design is the number of transects, K. Table 4
presents the results of simulations where we doubled the number of transects from 24 to 48. For
population sizes of 7, 500 and 10, 000 we ran simulations with both variations of K as well as the
three σ values previously analyzed.

Figure 8a displays the results graphically. In both population facets we see that as K
increased from 24 to 48, the %BiasN̂ became closer to zero (highlighted by the black line). This
also held for all three values of σ. Using the SEsim, we also concluded that none of the ˆ̄Ns were
significantly different than 0 in the K = 48 simulations. Therefore increasing K did appear to
decrease %BiasN̂ , but not in a statistically significant way if our N and σ were large enough.
Increasing K did make a difference in the case of small σ and N values like the simulation with
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N = 7, 500 and σ = 0.2.

(a) Effects on % Bias (b) Effects on CV (N̂)

Figure 8: How changing K, σ, and N affect estimates

Intuitively, these results make sense. As one increases K, one expects more observations n.
Table 4 also illustrates that as K doubled, n doubled in this constant density scenario. With larger
n we expect to make more accurate predictions of N .

The other statistic of interest was the CV (N̂). In all cases, as K increased, CV (N̂)
decreased. This change is visualized in Figure 8b. This effect can be explained by our analysis
of CV in section 3.3.1. In these simulations, because both K doubled and n doubled, n

K did not
change. Therefore as we increased K, we slightly decreased CV (N̂). From Figure 4, we know
that as n

K became large, the difference between values of K shrunk. Our largest n̄ in these sets
of simulations, however, was n̄ = 92 with K = 48. Therefore n

K = 3.75 which is not a very large
value, so we would expect a difference in CV (N̂) if we change K. Note that in all simulations we
were under-predicting the true value of CV (N̂) as seen in the negative %BiasSE .

N σ K n̄ ˆ̄N %BiasN̂ SEsim %BiasSE CV (N̂)

10, 000 0.200 24 30 10, 118 1.180 1.200 −14.160 0.263
10, 000 0.200 48 61 9, 910 −0.900 0.970 −5.360 0.169
10, 000 0.500 24 72 10, 018 0.180 0.880 −16.690 0.196
10, 000 0.500 48 144 10, 016 0.160 0.700 −4.980 0.121
10, 000 0.700 24 91 10, 208 2.080 0.790 −13.310 0.173
10, 000 0.700 48 180 9, 986 −0.140 0.720 −13.980 0.125

Table 4: How the number of transects affects estimates

4.4.4 Stratified Design

The next question we hoped to answer was how running a stratified design would change
estimates. In this case, we held total K constant, but changed the number of transects between
strata. In one design, K1 = 16 and K2 = 8 where Ki was the number of transects in strata i.
Thus, one strata contained half as many transects as the other. Comparing a design with 24
evenly spaced transects to one with the two strata design, we did not see statistically different
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results. The %BiasN̂ were within 2SEsim from each other and the CV (N̂) were the same.
Therefore, we conclude that when you have a constant density, a stratified design does not help
or hurt your estimates. The results can be viewed in the first two rows of Table 5.

4.4.5 Stratified Designs with Unequal Densities

The next simulations considered what would happen when the strata had different densities.
In this case one strata had a larger density than the other with the overall population staying at
N = 10, 000. This aimed to mimic what might happen in a lake where half of the lake was more
infested with zebra mussels than the other. We will refer to the more infested area as the
“infestation zone” or “infest-strata.”

Since our research team cared about whether a lake was too infested for treatment, they
wanted to have the best estimate for the densest region of the lake. Therefore, if we were
implementing a design where we placed a different number of transects in the different strata, we
would want to place more transects in the “infest strata” because as we found earlier, more
transects meant more accurate and precise estimates. For our simulations we placed 16
transects in the infestation zone and called this design “correctly identifying” the infestation zone.
The remaining 8 transects were placed in the non-infestation zone, keeping the total number of
transects constant at 24. Since researchers do not always know where the infestation zone is, we
also ran simulations where 16 transects were in the non-infestation zone and the 8 transects
were in the infestation zone. We called this design, “incorrectly identifying” the infestation zone.

Table 5 includes the results of these transect designs in the last two rows, along with the third
row that shows what would happen if we placed 12 transects in both the infestation zone and the
non-infestation zone. In the case of incorrectly identifying the infestation zone, we found 25 less
observations and under-predicted N . In the correctly identified design, we slightly over-predicted
N . After analyzing the SEsim, however, neither simulation produced estimates significantly
different than the actual N . The CV (N̂) of the two designs are close, with the correctly identified
infestation zone having a slightly lower CV (N̂). Also note that the correctly identified infestation
zone design did not appear to preform any better than the case where we place 12 transects in
both strata. In all cases, the %BiasSE reported that we are under-predicting the true SE.

N1, N2 K1,K2 n̄ ˆ̄N %BiasN̂ SEsim %BiasSE CV (N̂)

10,000 24 91 10, 208 2.080 0.790 −13.310 0.173
5,000,5,000 16, 8 90 10, 103 1.030 0.780 −9.320 0.172
7,500, 2,500 12, 12 90 10, 107 1.070 0.940 −9.860 0.161
7,500, 2,500 16, 8 105 10, 032 0.320 0.740 −13.270 0.164
2,500,7,500 16, 8 75 9, 985 −0.150 0.760 −4.390 0.170

Table 5: How changing density and transect placement affects estimates

4.4.6 Addition of Hotspots

Before drawing any conclusions about our different sampling designs, we also wanted to
investigate what would happen to our estimates if hotspots were present. A “hotspot” is an area of
increased density. Zebra mussels spread out from a starting location so it makes sense that there
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would be hotspots in different areas of the lake. Since we did not have expert knowledge on the
size of a hotspot we would observe for zebra mussels specifically, our analysis was more broad.

For our simulations we added the same size hotspot to each of the designs analyzed in the
previous section. Table 6 displays the results of these simulations. In the case of the original
design, we had N = 10, 000 and K = 24 with one strata. The hotspot was placed in the middle of
the area. In the correctly identified infestation design, the hotspot was placed in the strata with
N1 = 7, 500 that also had K1 = 16. In the incorrectly identified infestation design, the hotspot was
placed in the strata with N2 = 7, 500 and K2 = 8. Since our transects were randomly placed with
each iteration, the position of the hotspot within the desired strata did not matter. In some cases a
transect might have fallen directly on that hotspot and in other cases, missed the hotspot
completely because of the spacing between transects. When sampling a lake, we most likely
would not know where a hotspot was located, so we would be unsure if a transect had been
placed on a hotspot or if there were hotspots we missed. Therefore, we wanted to especially take
note of the CV (N̂) in these simulations since, depending on where transects are placed, we may
see very different estimates of N̂ .

Design Hotspot n̄ ˆ̄N %BiasN̂ SEsim %BiasSE CV (N̂)

Original No 91 10, 208 2.080 0.790 −13.310 0.173
Original Yes 92 10, 198 1.980 0.980 −8.420 0.166

Correctly Identified Infestation No 105 10, 032 0.320 0.740 −13.270 0.164
Correctly Identified Infestation Yes 105 10, 085 0.850 0.900 −1.200 0.155
Incorrectly Identified Infestation No 75 9, 985 −0.150 0.760 −4.390 0.170
Incorrectly Identified Infestation Yes 75 9, 931 −0.690 1.280 −20.260 0.222

Table 6: How hotspots affect estimates

The original hotspot simulation added a hotspot to our original design. We did not actually
see a significant difference in these simulations when looking at our resulting values. The most
significant change occurred in the CV (N̂), where the value dropped when a hotspot is added.
The same can be said for the correctly identified infestation zone design, where only the CV (N̂)
seemed to decrease.

In contrast, we did see a difference under the incorrectly identified hotspot design. While n̄
remained the same and the %BiasN̂ was not significantly different, SEsim, %BiasSE , and
CV (N̂) all dramatically increased when a hotspot was present. If we only had 8 transects in the
infestation zone and one of those transects fell directly on the hotspot, there was many more
detections on that transect than others in the strata. Looking back at the SE(D̂) Equation 8, if
nk
lk

− n
L was large, which was the case if we had one transect with many more observations, it

increased CV (N̂). Figure 9 displays the distribution distribution of N̂s produced through the
simulations for the incorrectly identified infestation zone both with and without a hotspot. The
greater CV (N̂) in the hotspot simulation is apparent as the distribution of N̂s is wider. Notice that
both distributions are still centered around the actual value of N = 10, 000, but when a hotspot
was present, there were large N̂ outliers. In these outliers, a transect was most likely placed
directly on the hotspot skewing our estimates of N̂ . Therefore, if we cannot identify where
hotspots are, using a stratified design runs us the risk of either vastly over-predicting N̂ or
under-predicting.
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Figure 9: N̂ Distribution for incorrectly identified infestation design

4.4.7 Comparing Designs

Based on these results, what is the best sampling design? Figure 10 displays the N̂
distribution for a two-strata population with N1 = 7, 500, N2 = 2, 500 and a hotspot present in the
infestation zone. Each graph however has a different transect design. The first has 12 transects
in both strata, the second is the correctly identified infestation zone design and the final is
incorrectly identifying the infestation zone. Looking at the distribution of N̂ , the incorrectly
identified design preforms the worst as we have discussed. Comparing the correctly identified
design against just using 12 transects in both strata, however, appears to not have a significant
difference. Therefore, if we cannot identify the infestation zone, even if hotspots are present we
are better off just using a constant transect placement across the entire lake so we do not
mistakenly limit the number of transects in the infestation zone.

Figure 10: N̂ distribution for different designs
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5 Time and Detection

After working with the Lake Burgan data provided by the researchers and running various
simulations, our group became increasingly interested in what we can control to improve our
estimates. Time spent on a transect was a factor that we thought had the potential to influence
detection. We wanted to investigate if there was a trade off between faster, more efficient
transects and slower, more methodical transects. Specifically, we were interested in how would
the half-normal model parameters be affected by time. When sampling lakes, the diving team
only has so much time to spend at a given lake. Determining how that time should be used to
optimize our predictions was important. Spending more time on a transect means sampling less
transects, while going faster leaves more time to do more.

Because our lake data did not have a time component recorded for each transect, we were
not able to use this data to investigate this trade-off. Instead, we decided to develop our own
experiment to collect time data, mimicking a line transect by laying down a “line” on the floor of a
tennis court and scattering debris (pillow batting and cotton balls) around the court. We then
placed 30 mini-marshmallows around the court according to randomly generated “distance along”
the transect and “distance from” the transect measurements. The marshmallows were nestled in
the batting, placed next to cotton balls, and a few others free of debris. This design was meant to
reflect substrates our “mussels” could attach to.

We developed two separate sets of instructions, one encouraging participants to walk the
transect searching for marshmallows as quickly and efficiently as possible, and the other asking
participants to be slow and methodical in their search. While we did not enforce any time
restrictions, these differing instructions ensured that we would have a wide range of detection and
time measurements. On the day of our experiment, participants arrived at the tennis court and we
flipped a coin to determine the instruction treatment they would receive. The participant then
completed the transect, and we recorded which mussels were detected and total time elapsed.

With the collected data, each participant (from here on to be referred to as an observer) was
fitted to a half-norm model and σ̂, µ̂, and estimated population were extracted. To investigate the
relationship between time and detection, we plotted these fitted σ̂, µ̂, n, and N̂ against the time
spent on the transect. We noticed one observer had a σ̂ of nearly 600 compared to others’ σ̂s
between 1 and 4. After further investigation, we realized this observer had been running to the
outside edge and working her way back in, toward the transect when searching. Thus, she did
not have a half normal function starting at the transect, but a reversed version of this model. As
this will not be done during future surveys, her data was removed. Furthermore, it became
apparent that many of the marshmallows near the edge of the 5 meter half width were very easy
to find in comparison to those closer. As this is not expected to happen in reality, we truncated
the data and half-normal model fit to only 4 meters.

As the estimated population is of interest to the scientists investigating a particular lake, we
began our analysis by plotting each N̂ against the total time for the observer. With the reduction of
the half width to 4 meters rather than five, the total number of mussels in the population became
24. The relationship between N̂ and time was determined to be positively linear (Figure 11a). To
investigate why this might be, we turned to inputs within this estimated parameter: n and µ.

The total number of mussels observed has a non-linear relationship with time, as seen in
Figure 11 (b). While the relationship for this data appears non-linear in nature, it is important to
note the few data points with the longest time. As there were limited observers, these
observations could be influencing the structure of the data. For this experiment, this is still a
strictly increasing function, so as time increases, so does the number of observations made
within the transect.
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(a) Fitted N̂ against total time (b) n against total time

Figure 11: Total observations against total time

Another important parameter to consider in calculating the predicted population size is σ̂ and
its relationship with µ̂. As seen in Figure 12, σ̂ and µ̂ share a very similar relationship to time.
Both σ̂ and µ̂ increase at a decreasing rate when plotted against time. The relationship between
σ̂ and time can be seen in Figure 12a. The relationship between µ̂ and time is of a similar shape.
Toward the higher values of time, there is a larger standard deviation in σ̂ and µ̂, indicating these
functions may not become negative after a certain point as displayed in the results of this
experiment.

To further explore the relationship between σ̂ and µ̂, we can return to the half-normal model
as it pertains to detection probability. Figure 12 (b) displays sigmas increasing from 2 to 4 by
increments of 0.5, with the dark blue indicating the lowest σ and red indicating the largest. As σ
increases, so does µ, but at a decreasing rate. µ, again, is the area under the whole curve. Each
slice of color in this plot indicates the additive value of increasing σ by 0.5. As a result, µ has a
non-linear relationship with σ. Thus, µ has a similar relationship to time as σ, a non-linear
relationship with some optimal point around six minutes for this data.

(a) σ̂ against total time (b) Relationship between g(x), σ and µ

Figure 12: Varied σ compared to µ
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The fitted models from the observers within the experiment indicate non-linear relationships
between the parameters σ̂, µ̂, and n and time. As shown previously, N̂ is a function of P̂a, which
is equal to µ̂/w. When we rearrange our predicted population function, we get that the predicted
population is a function of both n and µ̂:

N̂ =
nA

a(µ̂/w)
(13)

Within the context of this experiment, both n and µ̂ have a non-linear relationship with time,
thus this non-linear effect will cancel when used to calculate N̂ , resulting in a linear relationship
between predicted population and time.

When considering different sampling designs, we want one that increases detection as much
as possible and gives us an estimate close to the parameter of interest. If time is to be used to
control certain parameters within the model, we must consider what we wish to optimize. As it
pertains to detection probability, the larger the σ, the closer we move toward a uniform detection
model. The larger the σ, the more detections are made, increasing n. As these values, σ and n,
have a non-linear relationship, there exists some time that optimizes these parameters. If these
functions do not become negative, but simply level off, there exists some point where the
marginal gain in σ is not worth the extra time.

6 Discussion and Conclusions

The results of our simulations can provide researchers with more knowledge of how the
estimators of abundance preform under different situations as well as suggest optimal sampling
strategies. If we predict that a lake has a low density after surveying, our estimates are probably
more bias as well as less precise, as we saw when we had low N values. So while we cannot
control the N of a lake, it is important to understand how our estimators preform under low N
values. We also saw in our simulations that when σ was low, our estimates were also more bias
and less precise. Therefore if we are predicting low σ values, our estimates are less accurate.

A way to combat this potential bias and imprecision is to increase the number of transects. In
our simulations where we doubled the number of transects in the sample area, we saw both
accuracy and precision increase. If the population of the lake is large enough, however, such that
we are finding Buckland’s suggested number of mussels, more transects are not necessary to
decrease our bias. All the simulations we ran predicted SE(N̂) as smaller than the actual
distribution of the N̂ values from the 300-500 runs. Therefore we conclude that Equation 8 to
estimate SE(N̂) is biased.

We also looked into the trade-offs of running a stratified design where one strata had more
transects than the other. While there may be some benefit to placing more transects in the
infested zone, especially when a hotspot is present, if we misidentify the infestation zone, we risk
making large prediction errors. Therefore unless researchers know exactly which area of the lake
is the most infested, we would recommend keeping with a constant transect design since it
minimizes the chance of large outliers in estimates.

As it pertains to survey design, time has provided an avenue to better detection and
improved precision. There exists some optimal time spent on a transect such that σ in the
half-normal model is optimized, and the number of mussels found reaches a maximum (or a point
where a marginal increase in n is not worth the extra time). The relationship between time and n
supports the claim made previously: to control the precision of our estimates, CV (D̂), we can
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increase or reduce the number of mussels found as we change the amount of transects in the
design. If fewer transects are to be used to survey, more time must be spent on each to reduce
error. If more transects are used, the divers are free to move faster to achieve the same level of
precision. Before, the number of transects used in a design was the only way to influence
estimators like N̂ and D̂. Now, by adjusting time spent on a transect, parameters like σ and µ can
be influenced as well.

7 Further Research and Limitations of our Analysis

One potentially interesting area of further research for this topic could involve incorporating
habitat covariates into the model. Because of the nature of the hazard rate and half-normal
distributions, we can change σ according to different variables. Unfortunately, our data only had
two habitat descriptors, sand or silt. It could be intriguing to look at the impact of more varied
habitats on detection probability for zebra mussels, as zebra mussels are found in a wide range
of lake habitats, including rocky or muddy zones.

One of the focuses of our research addressed the effect of hotspots on detection probability.
While we were able to simulate a hypothetical hotspot, our created hotspot was circular, which
may not be the most realistic shape. If we had more information about the actual structure of
zebra mussel hotspots, for example how exactly they multiply and expand, our findings may be
more realistic.

Lastly, we are interested in expanding on our time analysis. Because of our limited resources
and time with this project, we believe there could be much to build upon with our experiment. The
first would be to expand the number of transects. Instead of sampling from just one transect, it
would be informative to have multiple transects the participants could walk along to gather more
data. Because this experiment was conducted during the winter, there were limited locations to
hold the experiment. We would have rather conducted the sampling in a more realistic setting,
instead of a gymnasium. If someone with more resources were to conduct this experiment, it
would be interesting to set up transects in the water where actual divers could sample zebra
mussels.

Most of the limitations of our study stemmed from only having a limited amount of data. The
literature recommends that the total line-transect sampling should have a minimum of 60-80
observations (Buckland, 2011). Our data from Lake Burgan, however, only contained 52
observations. While this detail should be noted, we do not believe that the 60-80 observation
minimum is a harsh threshold. Our research still produced informative results, even with the low
number of observations.

The DSsim package (Marshall, 2017) we utilized for our simulations would not complete a
simulation if less than 20 observations existed for an iteration. Unfortunately, this prevented us
from exploring data with a small amount of observations. The immense amount of time required
to run many of our simulations also limited the amount of simulations we were able to complete.
Some of the more elaborate designs took over 48 hours to run, which prevented us from running
more simulations. Even with these limitations, we were able to make worthwhile insights into the
line-transect distance sampling methodology. We believe that there is substantial potential in this
field for further exploration and study.
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