Assessing environmental injustice in suburban industrial sectors:
A case study of Northwest Indiana and New Jersey

Abstract

This study attempts to evaluate whether environmental injustice is occurring by examining environmental
and demographic factors' effects on health outcomes in Northwest Indiana (NWI) and New Jersey (NJ)
using data from the CDC’s Environmental Justice Index. Four health conditions—high blood pressure,
asthma, diabetes, and cancer—were modeled at the census-tract-level using stepwise regression and
refined for interpretability. Results show that socioeconomic factors, including minority population
percentage, poverty rates, and age, are the strongest predictors of health outcomes, while environmental
exposure variables are less significant. Models retain robust predictive power when tested on neighboring
regions, and comparisons with null models containing only pollution variables confirm that
socioeconomic factors do play a critical role in driving health disparities. While this study underscores the
need for targeted interventions in vulnerable communities, limitations in census data complicate the
assessment for environmental injustice.



Introduction

Environmental injustice considers that marginalized communities are disproportionately affected by
environmental harms such as pollution and industrial waste. While occurring in a wide variety of areas,
this study focuses on two suburban industrial areas: Northwest Indiana and New Jersey. Northwest
Indiana (NWI) comprises Lake, Porter, and LaPorte counties, and is an overflow of the Chicago
metropolitan area into the Hoosier state. Proximity to the city and Lake Michigan has made NWI a hub
for industry, including % of the integrated steel mills in the US, the largest oil refinery in the Midwest,
two ports, and a plethora of manufacturing. These industries greatly pollute the region, causing adverse
health effects in the population. New Jersey faces similar challenges. It faces severe environmental
challenges, with industrial pollution affecting vulnerable communities like the Ramapough Lenape Nation
in Ringwood, who suffer from toxic waste dumping, and Newark’s Ironbound District, where air and
water pollution harm immigrant populations. This project attempts to characterize whether environmental
injustice is statistically detectable by examining how environmental and demographic factors influence
health outcomes in NWI and NJ using census tract data from the CDC Environmental Justice Index
dataset. Four health metrics—high blood pressure, asthma, diabetes, and cancer rates—are modeled in
both regions using stepwise regression and refined into smaller, more interpretable models. These smaller
models retain strong predictive power while reducing complexity, even when applied to other regions.

Methods: Data and Analysis
The Center for Disease Control and Prevention (CDC) Environmental Justice Index (EJI) is a national

geospatial tool for evaluating cumulative impacts of environmental factors on health and equity in the
United States. The dataset categorizes data into three general categories: Social Vulnerability,
Environmental Burden, and Health Vulnerability, which are used to calculate an EJI for each census tract
within the United States. The dataset contains 118 variables, and its observational unit is a census tract,
totalling about 80,000 across the US.

Four sections of the dataset were used for each region studied herein: Northwest Indiana
(nwi_data) contains Lake, Porter, and LaPorte counties in Indiana, totaling 177 census tracts; New Jersey
(NJ_data) includes the entire state, containing 2004 tracts; Cook County, Illinois (chi_data) includes the
city of Chiago and a few surrounding suburbs, containing 1317 census tracts; and the Philadelphia
metropolitan area (phil _data) includes Lehigh, Northampton, Bucks, Montgomery, Chester, and
Philadelphia counties, totaling at 989 tracts. Both “nwi_data” and “NJ_data” will train our models and be
used to evaluate environmental injustice. The datasets “chi_data” and “phil_data” serve as test datasets
which will be used to determine the accuracy of our models. For each region, the full dataset was parsed
to remove unwanted variables. Within the dataset, data collected is represented in raw (E), percentage
(EP), and percentage rank (EPL) formats. Due to this repetition, only raw and percentage forms of the
data were kept. This was performed for all datasets before the analysis began.

We recognize that this dataset is collected as census data, and therefore our findings are highly
biased via the protocols used to collect census data. For example, census tracts within our dataset did not
report data for a large majority of the variables, likely due to no permanent population existing in these
tracts. For this reason, these tracts were removed from the datasets to avoid coding errors. Interestingly,
these tracts could have a particular influence on our project if data was collected. For example, two tracts
from “nwi_data” correspond to the Port of Indiana and the surrounding steel plants, which have a
significant daytime population who are exposed to harmful pollutants.

Models for four response variables (EP_BPHIGH, EP_ ASTHMA, EP_DIABETES, and
EP_CANCER) were first generated using automated stepwise linear regression in both directions using
the Bayesian Information Criterion (BIC) for selection. When each model was generated, the remaining
response variables were excluded to remove the influence of comorbid conditions from our models.
Despite high predictive accuracy, these stepwise models were minimized to simplify and improve
interpretation by removing their least impactful variables (smallest magnitude), creating final models.
Final models were evaluated and compared to stepwise models using residual plots, added variable plots,



variance inflation factors, and spatial residual maps to ensure predictive accuracy was conserved while
improving interpretation.

A null model was developed which predicts the response variable via four pollution variables
(E_OZONE, E PM, E DSLPM, E TOTCR). This null hypothesis states that there is no correlation
between health outcomes and any socioeconomic variables in our dataset, only direct pollution exposure.
The Akaike Information Criterion (AIC) and BIC of each final model were compared to those of the
corresponding null model to ensure the final model improved from the null. Both the AIC and BIC were
compared to ensure heavy penalization of complex models when using BIC did not inflate the more
complex model (increasing the likelihood of type I and II errors).

Finally, the predictor variables from each final model were used to predict the response variable
in a new region, creating test models. Final models trained on “nwi_data” were remodeled on “chi_data”
and models trained on “NJ_data” were remodeled on “phil data”. Methods for comparison were repeated.
Residual plots, added variable plots, variance inflation factors, and spatial residual maps of the final
model were compared between the training dataset (NWI or NJ) and the test dataset (Chicago or
Philadelphia, respectively). Finally, these models were also compared to the null model (using chi_data or
phil_data) using AIC and BIC.

Results

In total, eight models were produced to predict the prevalence of four health conditions in two separate
locations: New Jersey and Northwest Indiana (Fig 1A). Surprisingly, all final models only rely on seven
socioeconomic variables and no environmental variables for all predictions (Fig 1B). No R? values were
lower than 0.6 after model reduction (the majority of the models had R* > 0.75), suggesting our models
are able to predict adverse health outcomes. (Fig 1C). These models were simplified from initial stepwise
selections by selecting those with the largest coefficients, while ensuring diagnostic assumptions, such as
linearity and homoscedasticity, were met. Spatial residual maps were utilized to confirm that there is an
even distribution of the residuals across geographic areas (see Appendix 1).

For example, the model predicting diabetes prevalence in New Jersey identified three significant
predictors: the percentage of minority populations, the percentage of individuals aged 65 and older, and
the percentage of individuals living below 200% of the poverty level (Equation 1). The model equation
highlighted the influence of socioeconomic and demographic factors on diabetes prevalence, with higher
rates observed in areas with more minorities, elderly residents, and economic hardship (see Appendix 2).

EP_DIABETES = 2.995 + 0.042 * EP_MINRTY + 0.179 * EP_AGE65 + 0.114 * EP_POV200  (Eqn 1)

When compared to null models based solely on pollution variables, the final models consistently
had lower AIC and BIC scores, suggesting superior performance in predicting health condition prevalence
and providing evidence of environmental injustice (Fig 1D). The variables of these models were also
tested on neighboring metropolitan datasets, showing only minor reductions in R? values, indicating their
generalizability as predictors in a region where environmental injustice is present. Residual analyses
demonstrated uniform distributions across areas with significant minority populations, ensuring fairness
and accuracy in predictions. Additionally, lower AIC and BIC scores were reported for models of
neighboring datasets when compared a null model for that dataset, recapitulating superior predictive
performance (Fig 1D).

Discussion
The study demonstrates that social and demographic factors can predict adverse health outcomes better
than pollution variables, particularly in areas experiencing environmental injustice. Surprisingly,
socioeconomic factors such as minority population percentage, poverty rates, and age demographics
consistently emerged as key determinants. These findings may suggest that environmental injustice is
rooted in systemic social inequities rather than solely environmental exposures.

While many predictors throughout our models had correlations that supported a hypothesis that
environmental injustice was occuring, others were less intuitive, highlighting possible problems



A R?values NJ_data phil_data nwi_data chi_data
Response| Stepwise Final Test Stepwise Final Test
Health NJ Final model High BP| 0.7932 0.613 0.6698 0.915 0.8957 0.8957
High Blood Pressure EP_BPHIGH = 18.908 + 0.033 * EP_MINRTY + 0.508 * EP_AGE65+ Asthma rate] _0.7820 0.7032 0.7012 0.9478 0.9057 0.8575
(EP_BPHIGH) 0.165 * EP_POV200 Diabetes rate] 0.8662 0.7818 0.7687 0.9242 0.887 0.8407
Asthma (EP_ASTHMA)  |EP_ASTHMA =7.726 + 0.067 * EP_POV200 - 0.062 * EP_LIMENG+ Cancer rate]  0.9094 0.8971 0.8678 0.8028 0.7671 0.7678
0.002 * EP_MINRTY + 0.077 * EP_UNEMP
Diabetes (EP_DIABETES) |EP_DIABETES = 2.995 + 0.042 * EP_MINRTY + 0.179 * EP_AGE65+ NJ AlC BIC
0.114 * EP_POV200 Response| null final null final
Cancer (EP_CANCER) EP_CANCER = 3.854 + 0.180 * EP_AGE65 + 0.034 * EP_AGE17- High BP| 12474.472 | 10934.402 | 12781.075 | 10962.404
0.014 *EP_MINRTY - 0.009 * EP_RENTER Asthmarate] 7110.697 | 4904525 | 7144.299 | 4932.527
Tieaith N Einal modal Diabetes rate] 10339.222 | 7538.070 | 10372.825 | 7571.658
High Blood Pressure EP_BPHIGH = 18.33056 + 0.14290 * EP_MINRTY + 0.57710 CanesiiatE) 7870.571 | 8708.399 | 7904.178 | 3741.986
(EP_BPHIGH) gz_é?giis; 0&(251 ';;T7:R* EP_POV200 - 0.82192 * EP_LIMENG - NWI AIC BIC
Asthma (EP_ASTHMA) __|EP_ASTHMA = 7.993576 + 0.060243 * EP_POV200 - 0.206066 * R‘Ls.'”"se null final null final
EP_LIMENG + 0.019505 * EP_MINRTY igh BP| 1141.8850 | 832.4234 | 1160.8738 | 845.5769
Diabetes (EP_DIABETES) |EP_DIABETES = 0.157564 + 0.064282 * EP_MINRTY + 0.061833 * Asthmarate] 638.0413 | 300.5929 | 657.0300 | 316.4168
EP_NOINT + 0.339437 * EP_AGE6S5 + 0.136767 * EP_POV200 Diabetes rate] 991.7784 | 725.8554 | 1010.7671 | 744.8441
Cancer (EP_CANCER) EP_CANCER = 4.610221 +0.166193 * EP_AGE65 - 0.009150 * Cancer rate| 548.9879 | 300.7471 | 567.9766 | 316.5710
EP_RENTER-0.005255*EP_MINRTY |
AlC BIC
Response) null final null final
B High BP| 6622.166 | 5539.762 | 6651.5465 | 5564.546
Variabie = Definition of Variable Asthma rate] 3845.919 | 2072.942 | 3875.2994 | 2102.316
— - Diabetes rate] 5460.455 | 4106.070 | 5489.8352 | 4130.554
ERMINRTY &/ % minority population Cancer rate] 3772.177 | 1928.554 | 3801.557 | 1956.916
EP_POV200 6/8 % population under 200% poverty line - - - -
EP_AGE65 6/8 % population age 65 or older Chicago AIC BIC
EP_LIMENG 3/8 % population (age 5 or older) that speak “less than well” Response) null final null final
EP_RENTER 3/8 % population who rents High BP| 9124.799 | 7018.722 | 9155.881 | 7054.988
EP_AGE17 1/8 % population below age 17 Asthma rate] 5095.031 | 3061.663 | 5126.116 | 3087.568
EP_NOINT 1/8 % population without the internet Diabetes rate| 7214.210 | 5289.482 | 7244.295 | 5320.567
EP_UNEMP 1/8 % population unemployed Cancer rate] 4801.228 | 3196.901 | 4832.313 | 3222.806

Figure 1. Minimized models of socioeconomic predictors better predict adverse health

outcomes in comparison to environmental predictors. A. Final minimized models for four adverse
health outcomes in NJ and NWI. B. Only socioeconomic variables were included in final models, with
several appearing in the majority of models in NJ and NWI. C. R? values for minimized final models are
slightly reduced to stepwise counterparts. Test models report equivalent or improved R? values compared
to final models. D. AIC and BIC values for final models are less than null model values for all adverse
health outcomes and regions.

within our dataset. For example, all three models which contain English proficiency showed a negative
correlation, suggesting tracts with higher proportions of poor English proficiency have lower rates of
adverse health outcomes. This correlation likely reflects barriers to healthcare access causing
underreporting in census data, rather than direct causal relationships. Similarly, while not included in the
final models, diesel particulate matter also reported a negative correlation with health outcomes, yet it was
determined higher levels of diesel particulate matter are correlated with poor English proficiency.
Together, these data emphasize the need for improved census data collection methods to produce more
equitable datasets.
Separately, the null hypothesis used was not optimized for proper evaluation; only air pollution

variables were included due to the complexity of other environmental variables in the dataset. This
possibly decreased the accuracy of our null model, causing some final models to artificially perform

better than in reality. Development of a more representative null hypothesis could greatly improve the
significance of our findings.

Suburban areas like Newark and Trenton in New Jersey, as well as the industrial Northwest

Indiana, exemplify how vulnerable populations—low-income, minority, and elderly—face
disproportionate health disparities. While industrial and environmental conditions contribute to health

outcomes, our study shows social inequities are more significant predictors. Enhancing census data

quality could further refine and validate these findings, making the case for targeted public health
interventions in these communities.
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Appendices

Residuals of Diabetic Model Spatial resiuals of model predicting diabetes rates in NWI
in areas with NJ major minority populations
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Appendix 1. Spatial residual maps for diabetes rate in all regions studied. Spatial residual maps allow
us to determine if a specific geographic region (several proximal tracts) are unrepresented within the
models. The optimal residual map would contain an even distribution of the color associated with zero,
suggesting little to no variance across the region. The spatial residual map of NJ does not contain the
entirety of the state in order to observe extremely small census tracts where dense populations exist; these
regions were our focus region within the entire state. However, the entire state of NJ was evaluated in the
study. These four maps serve as an example; this process was repeated for all models for all four adverse
health income responses.
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Appendix 2. Added variable plots for the final model predicting diabetes rate in New Jersey. All
three socioeconomic variables included in the dataset have positive correlations for predicting diabetes
prevalence. Added variable plots for other models were performed for analysis, where linearity and
homoscedasticity were observed; this serves as an example.



