

Comparison Study of Survey Sampling Estimators

Professor Kelly McConville (Harvard)

Asteria Chilambo (Harvard Math '23), Jing Shang (Fudan Economics '23, Visiting Student at Harvard Statistics '22)

How does typical forestry data look like?

Ground Plot:

- Directly measures variables of interest
- Precise, but expensive and sparse!

Remote sensor census:

- Indirectly provides related information
- Cost-effective, but not exactly what we want

How can we use auxiliary variables to assist estimation for variables of interest?

Generalized Multivariable Difference Estimator (GMDE)

&

Generalized Regression Estimator (GREG)

GMDE

Step 1. Make use of Horvitz-Thompson $\hat{\mathbf{t}}_{\mathbf{y}\pi}$ and auxiliary residual $\mathbf{t}_{\mathbf{x}} - \hat{\mathbf{t}}_{\mathbf{x},\pi}$

Step 2. Among all linear combination of $\hat{t}_{y\pi}$ and $t_x - \hat{t}_{x\pi}$, choose one with minimal variance

GREG

Step 1. Start with linear regression

Step 2. Optimize regression coefficient

Step 3. Use **population** information of x to predict y **through regression**, plus **sample** information of residual

How do GMDE and GREG perform under different sampling scenarios?

What is dominating the difference?

• GMDE

Simple Random Sampling

Single Study Variable

GMDE $\hat{\mathbf{V}}_{\mathbf{yx},\pi} \hat{\mathbf{V}}_{\mathbf{x},\pi}^{-1} = \frac{\frac{1}{n} \sum_{i \in S} x_i y_i - \left(\frac{1}{n} \sum_{i \in S} y_i\right) \left(\frac{1}{n} \sum_{i \in S} x_i\right)}{\frac{1}{n} \sum_{i \in S} x_i^2 - \left(\frac{1}{n} \sum_{i \in S} x_i\right)^2} C_{\text{const}}$ Cov. of y and xGREG

Cov. of x

GMDE and GREG are the same under SRS!

$$\left(\sum_{j \in S} \frac{x_j x_j^{\top}}{\pi_j}\right)^{-1} \left(\sum_{i \in S} \frac{x_i y_i}{\pi_i}\right) = \frac{\frac{1}{n} \sum_{i \in S} x_i y_i - \left(\frac{1}{n} \sum_{i \in S} y_i\right) \left(\frac{1}{n} \sum_{i \in S} x_i\right)}{\frac{1}{n} \sum_{i \in S} x_i^2 - \left(\frac{1}{n} \sum_{i \in S} x_i\right)^2}$$

Simple Random Sampling

GROUND

Multiple Study Variables GMDE $(\hat{\mathbf{t}}_{\mathbf{y},gmde})_m = (\hat{\mathbf{t}}_{\mathbf{y}\pi})_m + (\hat{\mathbf{V}}_{\mathbf{y}\mathbf{x},\pi})_m (\hat{\mathbf{V}}_{\mathbf{x},\pi}^{-1})_m (-\hat{\mathbf{t}}_{\mathbf{x}\pi} + \mathbf{t}_{\mathbf{x}})$ Cov. of $m^{th}y$ and all xCov. of all xGREG $\hat{t}_{y,greg} = \hat{t}_{y\pi} + \left(\sum_{i \in S} \frac{x_i y_i}{\pi_i}\right)^{\mathsf{T}} \left(\sum_{j \in S} \frac{x_j x_j^{\mathsf{T}}}{\pi_j}\right)^{-1} \cdot (t_x - \hat{t}_{x\pi})$

GMDE and GREG are the same under SRS!

Using GREG to estimate the $m^{th}y$

Stratified Simple Random Sampling

Intuition:

When sample mean varies

GMDE is more precise.

significantly across strata, then

Because $\dot{\mathbf{v}}_{xxx}$ $\dot{\mathbf{v}}_{xxx}^{-1}$ is measured

within each stratum, while reg

coefficient is computed across strata. The den shrinks faster.

No simple form for two ratios, but have numerical similarities:

GMDE_DR	GREG_DR	GMDE	GREG	GMDE_Var	GREG_Var
0.601	0.591	1811.995	1814.122	0.895	0.923
0.599	0.584	1616.635	1616.157	0.721	0.815
0.595	0.580	1484.934	1483.678	1.151	1.267
0.600	0.579	1765.941	1765.211	1.146	1.178
0.608	0.595	1769.369	1766.972	1.188	1.233

Comparison of dominant ratio (also dominates var.)

Comparison of estimator and variance

Main takeaways

- A. Both GMDE and GREG make use of auxiliary variables and can improve performance compared with Horvitz-Thompson estimator
- B. Under simple random sampling, GMDE and GREG performs the same
- **C.** Under **stratified** simple random sampling, GMDE performs better

Future work

GMDE deserves more attention!

- Take different estimators of variance into consideration (eg. Hajek-Berger, Hansen-Hurwitz)
- Extend sampling scenarios (eg. two phase sampling)

Special Thanks to:

Emeritus Scientist

Forest Inventory & Analysis

Research Mathematical Statistician

Forest Inventory & Analysis

Kelly McConville

Harvard University

Department of Statistics