


People Count
Stories Student
Centered
Lessons to
Promote
Modeling

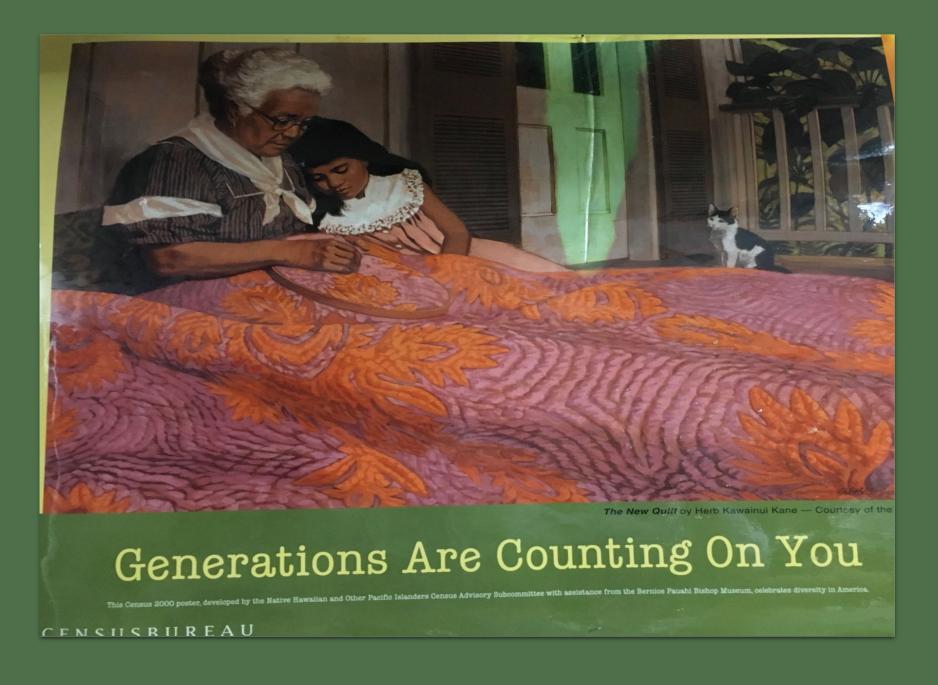
Henry Kranendonk Marquette University

The data stories within the population distributions of Henry's Quilt

People Count! and the stories of ...

Kristin **Generation X**

Abbey The Millennial


Adeline Generation Z

* Henry's Quilt

Parents Baby Boomers

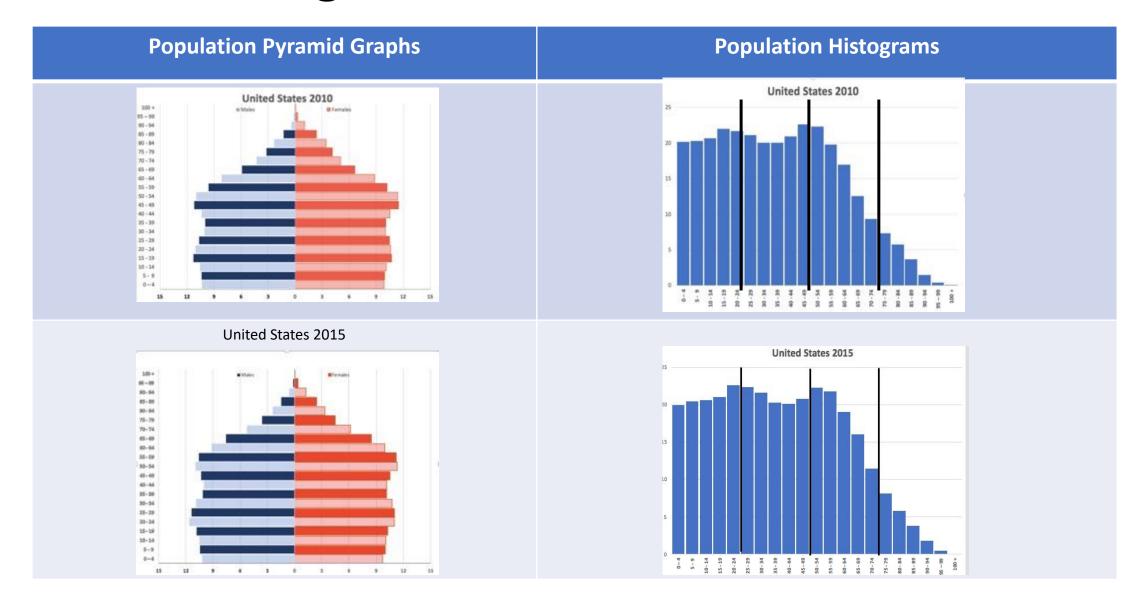
And generations yet to be named

Poster: United States Census Bureau 2000

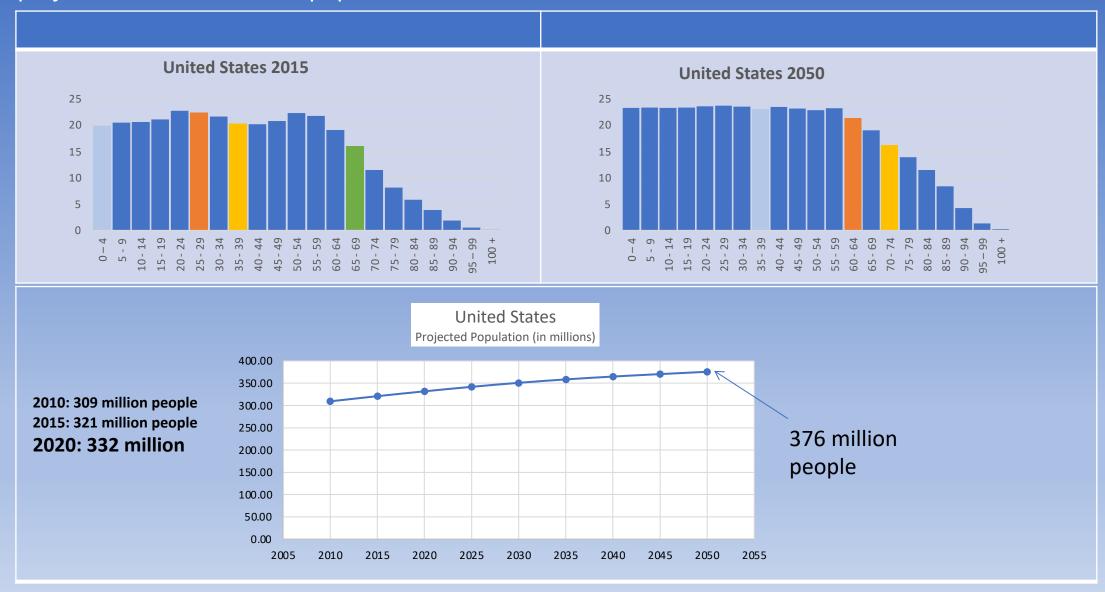
Painting by Herb Kawaine Kane (Hawaii)

Painting by Johnny Lott based off a photo taken at the first count of the 2020 Census in the Aleutian Islands, Alaska

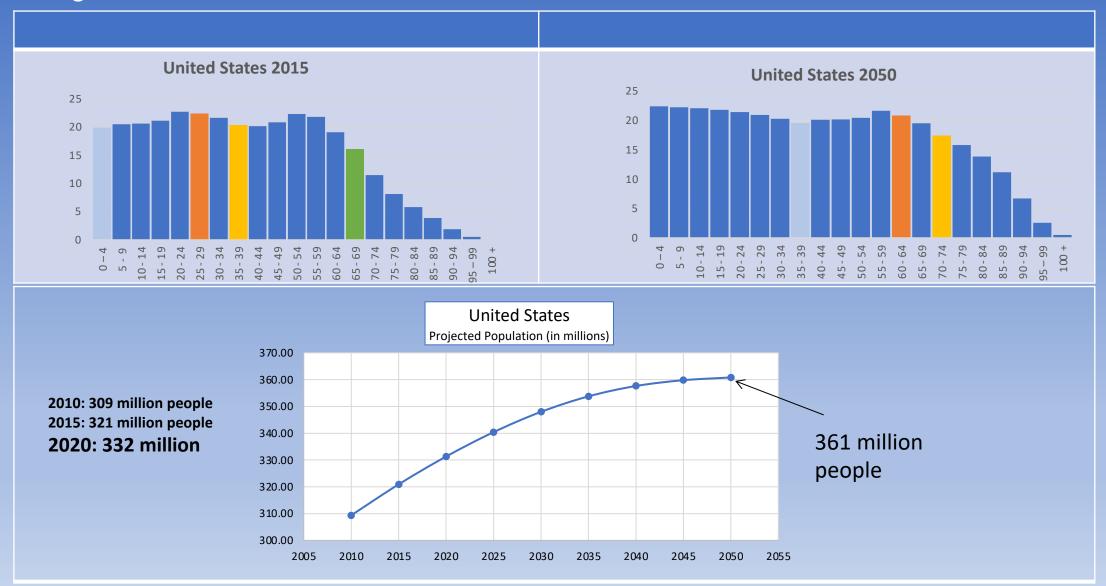
Goals for this session

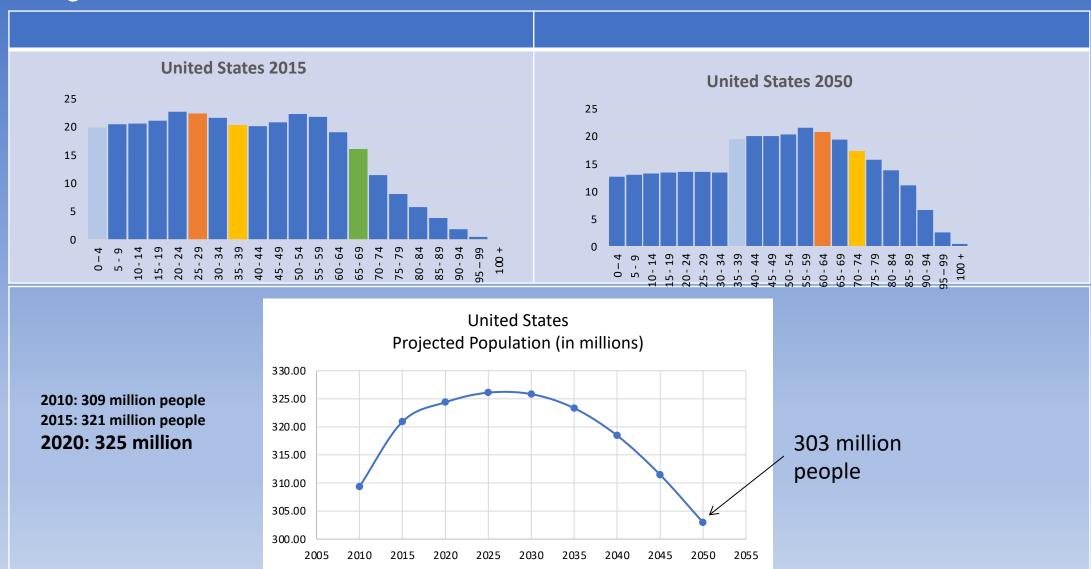

- To develop and implement a model (described as a recursive model) of population projections for the United States, Kenya, and Japan
- To interpret the projections based on the recursive model as summaries of the critical factors that impact change within a country's population over time
- To provide opportunities for reluctant students to develop relevant and meaningful mathematical and statistical problems (described as scenarios or data stories)

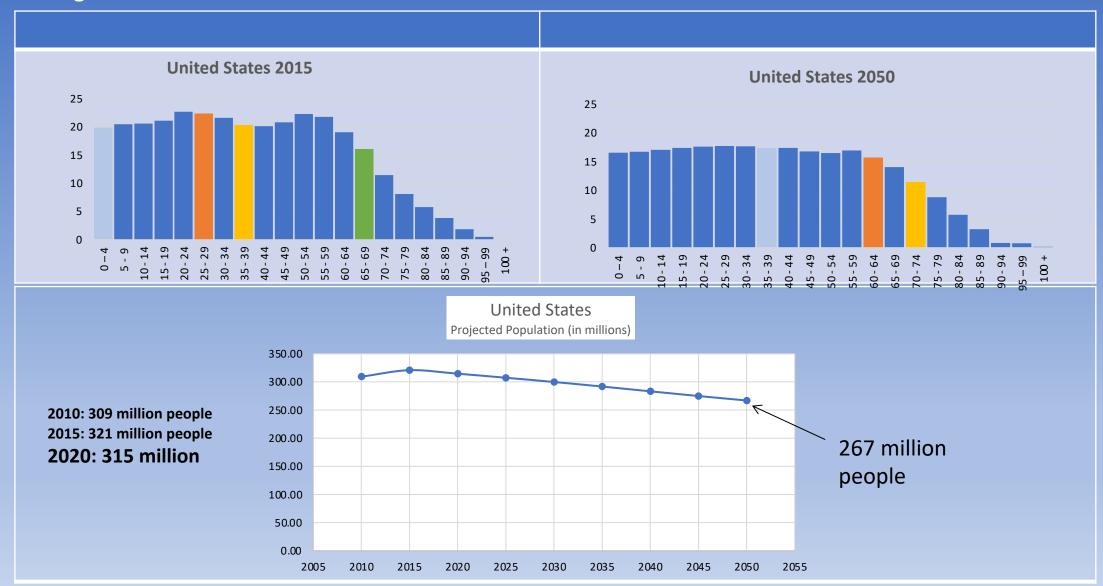
Target Population of Students

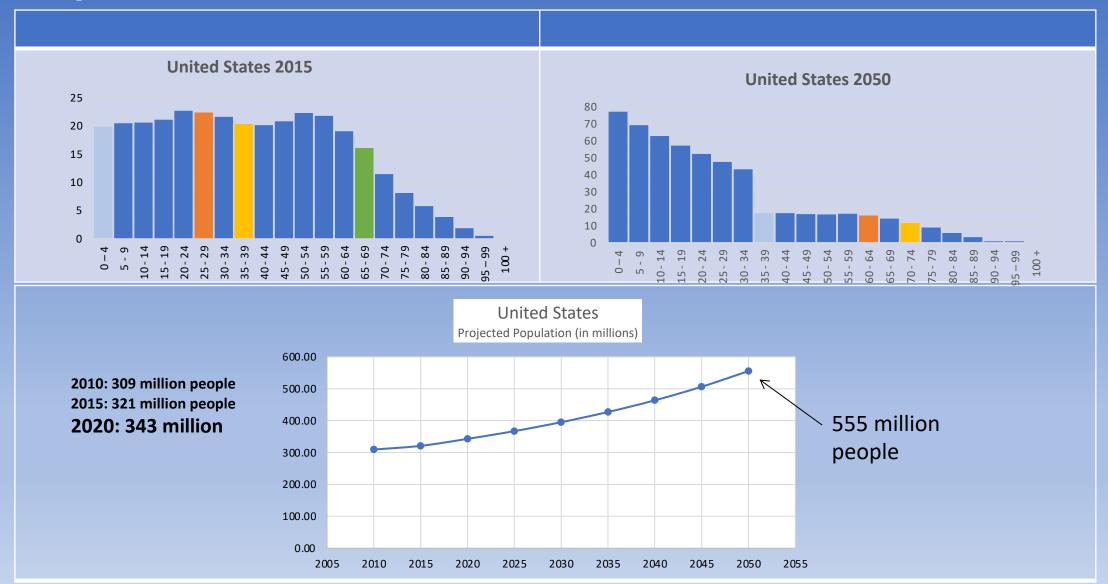

 High school and college students not convinced that mathematics or statistics has a meaningful role in their lives.

• High school and college students interested in connecting their own family or community backgrounds to the demographic summary of their country and family background.


What changes do we note from 2010 to 2015?


Scenario 1: What if the factors that impact the count of people from 2010 to 2015 remained the same from 2015 to 2020. What are the factors that impact the projected counts? What would be the projected counts of the US population from 2020 – 2050 if the factors remained the same?


Scenario 2: What if the factors that impact the count of people from 2010 to 2015 changed during 2015 to 2020 and resulted in the following graphs moving forward. What do you think happened during 2015 to 2020?


Scenario 3: What if the factors that impact the count of people from 2010 to 2015 changed during 2015 to 2020 and resulted in the following graphs moving forward. What do you think happened during 2015 to 2020?

Scenario 4: What if the factors that impact the count of people from 2010 to 2015 changed during 2015 to 2020 and resulted in the following graphs moving forward. What do you think happened during 2015 to 2020?

Scenario 5: What if the factors that impact the count of people from 2010 to 2015 changed during 2015 to 2020 and resulted in the following graphs moving forward. What do you think happened during 2015 to 2020?

What are the Factors of Change?

Population Factors

Identifies dominant changes due to:

Immigration

Emigration

Death

Foundation Factors

Summarizes change due to births

Implications of these Factors Through the Data Stories

Unit 1: A Country's Shape

Unit 2: Looking Back

Unit 3: Looking Forward

Unit 4: "What if ...?"

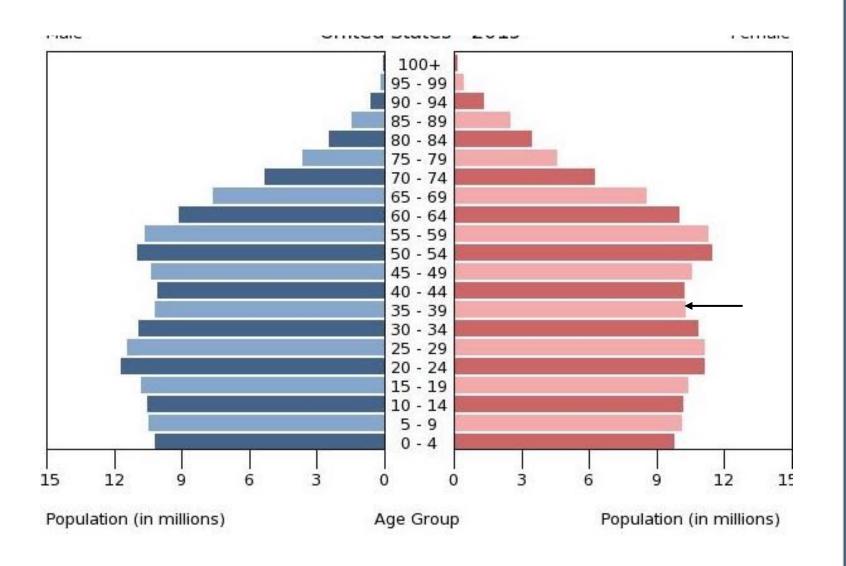
Unit 1:
A Country's Shape (Center and Spread)

• As we move through the data stories, think about the question: "Why is Kristin an interesting person to study in the data stories?"

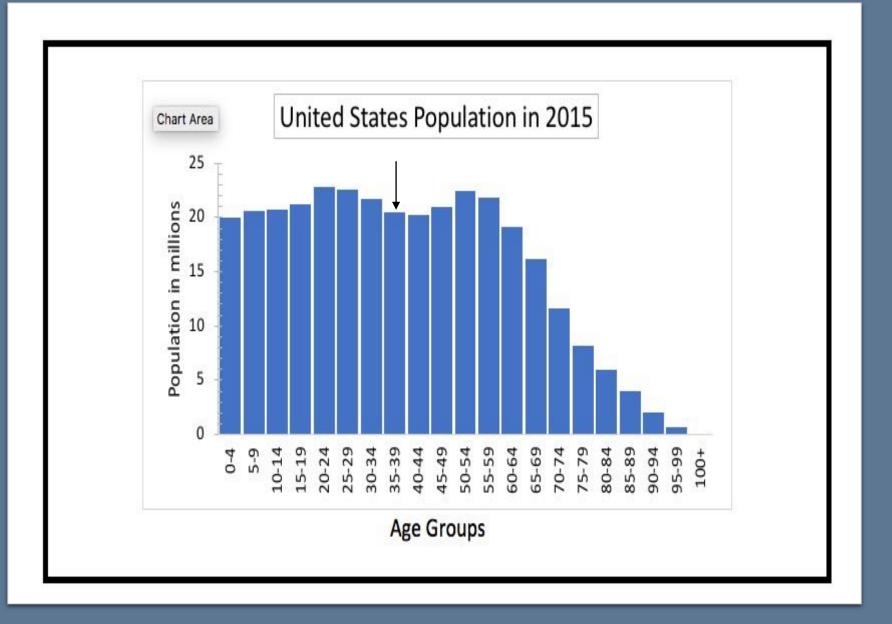
(The above question turned out to be very insightful in evaluating students understanding and interest in this material, plus identifying the first steps in the modeling continuum.)

Data Stories

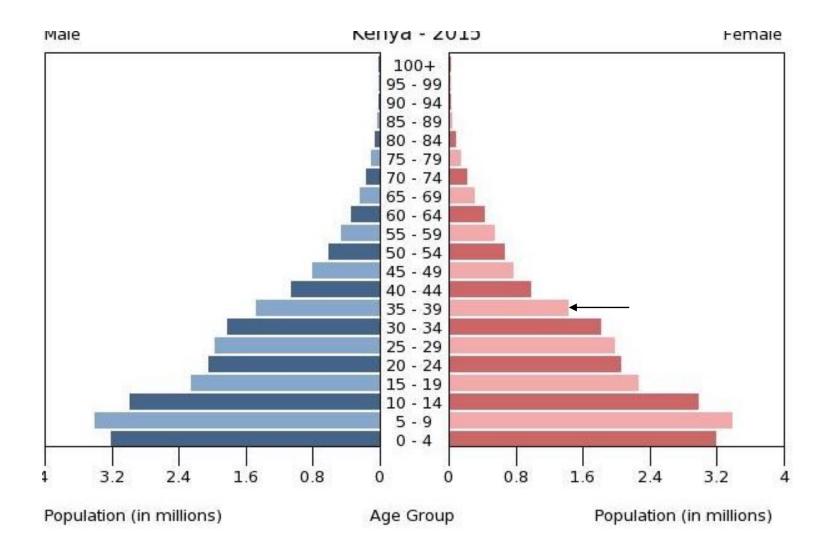
Kristin's Story - Chapter 1

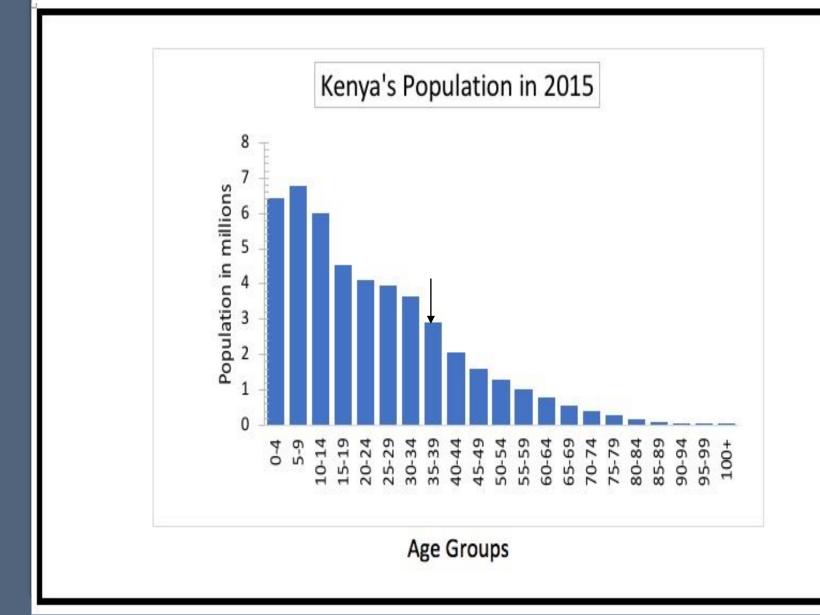

It was January 1, 2015. Kristin, a 36-year old female, lived in Milwaukee, Wisconsin. She worked 40 hours a week as a health care researcher for a community clinic. Most people involved in her research were 60 years old or older. She was responsible for obtaining basic data that included weight, height, blood pressure, heart rate, previous health concerns, vaccinations, diet and sleeping issues. She felt that the start of a new year was a good time to think about her own future.

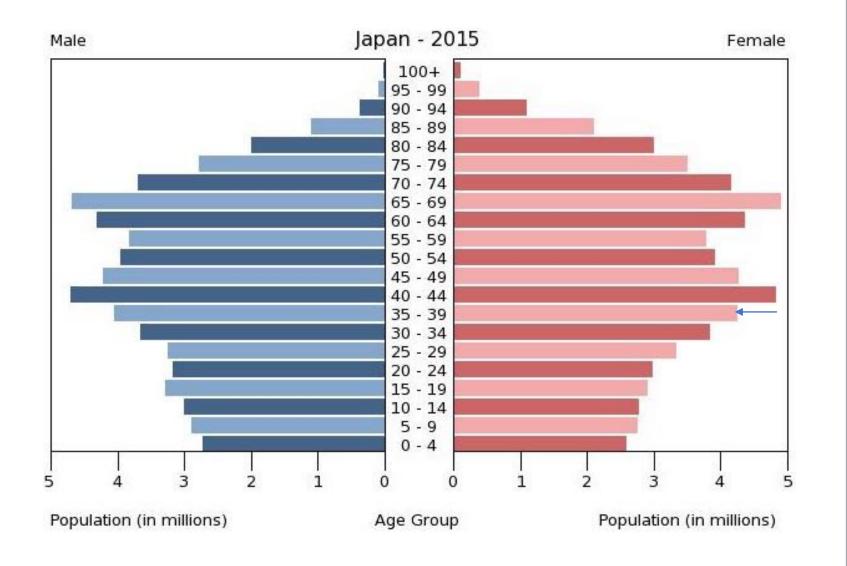
Kristin's mother was 66 years old at the start of 2015 and in good health. She came into the clinic at least once a year and generally did not require any follow-up visits. During her most recent visit, she stated something that confused Kristin. "Based on the shape of our country, I will be entering a new layer of our country's population in the next decade, along with lots of other people." Kristin was puzzled. What did she mean?

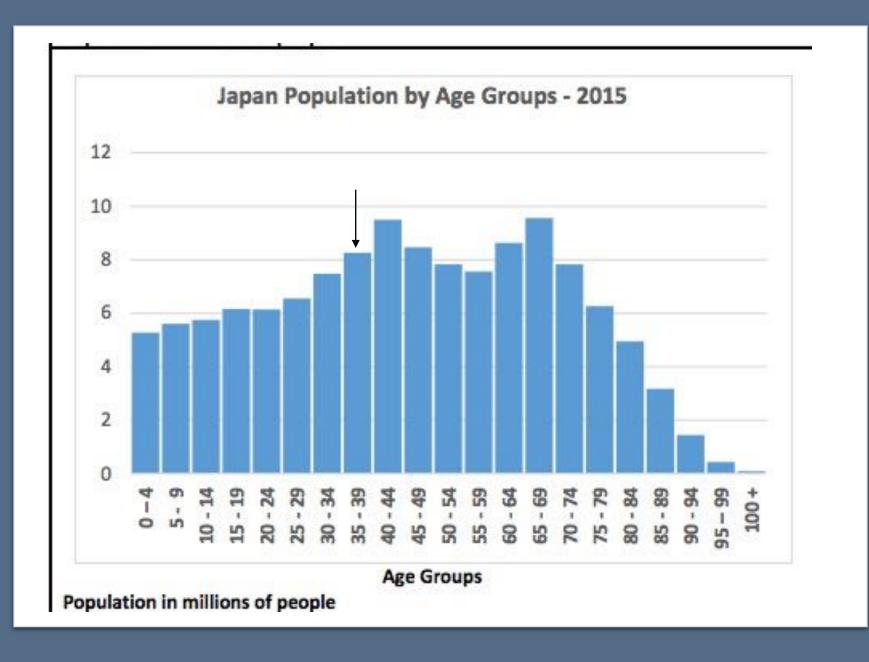

Kristin felt she could sketch the shape of the United States. Her sketch would be the shape she visualized during her study of geography in high school or college. She realized that her mother was reflecting on the fact that she was growing older, but what does age have anything to do with our country's shape? What did she mean that she was entering a new "layer"?

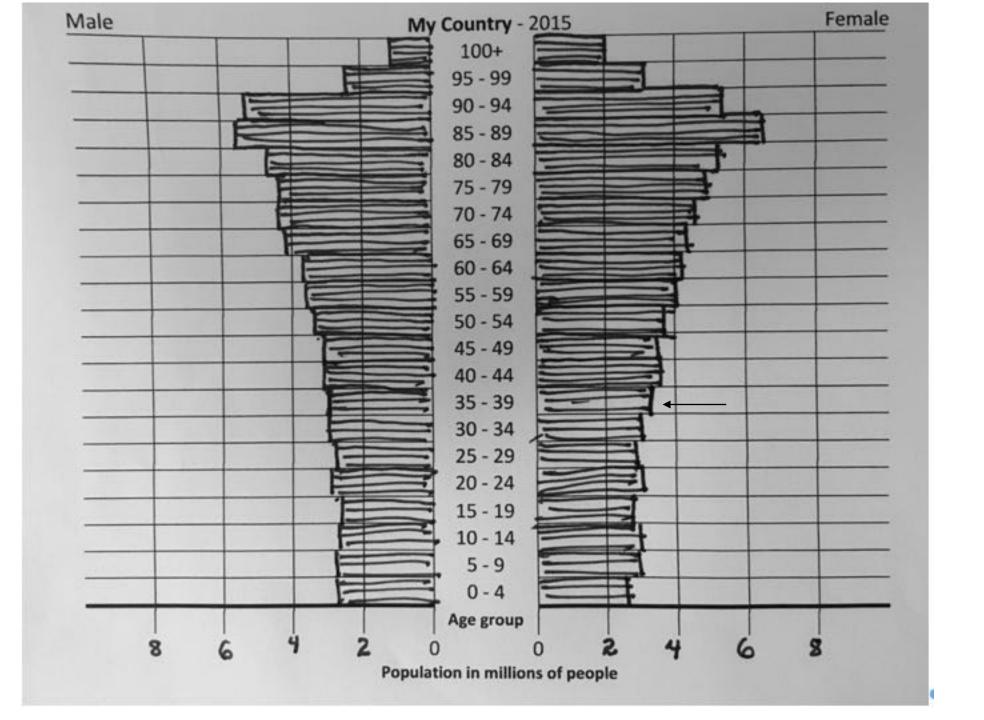
Shape suggested to Kristin something visual, like a square, a circle, or a triangle – something you studied in geometry. She thought again about her mother's comment. Kristin initially chalked up her mother's comment as something people say as they grow older. She found in her research however, a penulation puramid graph prepared by the United States Consus


Is there a different way to describe the shape of a country?


The United States - 2015


The United States - 2015

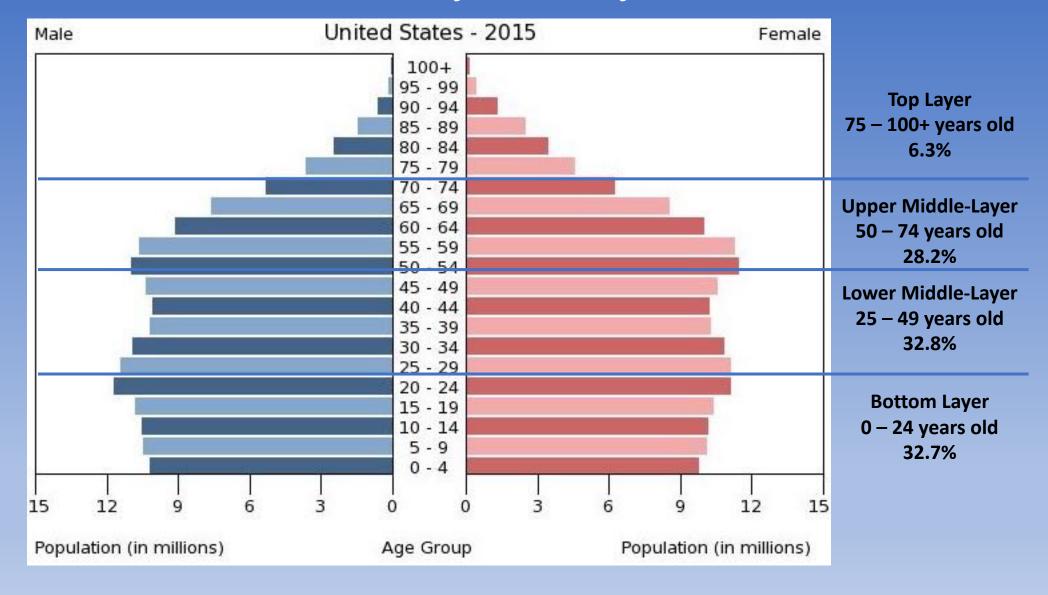

Kenya - 2015


Kenya - 2015

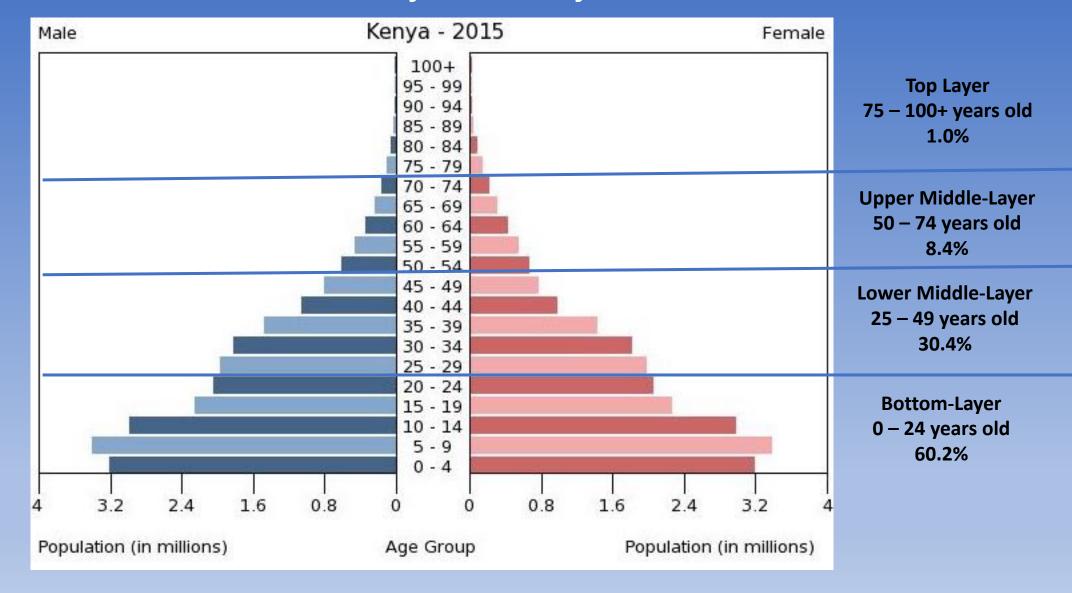
Japan - 2015

Japan - 2015

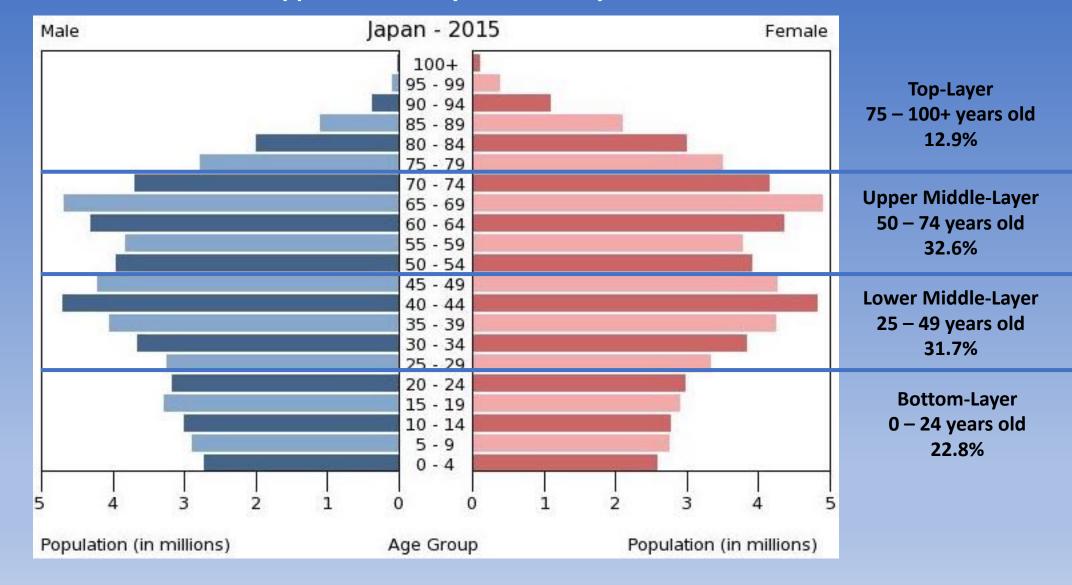
Population Pyramid Graphs of Countries Classifications

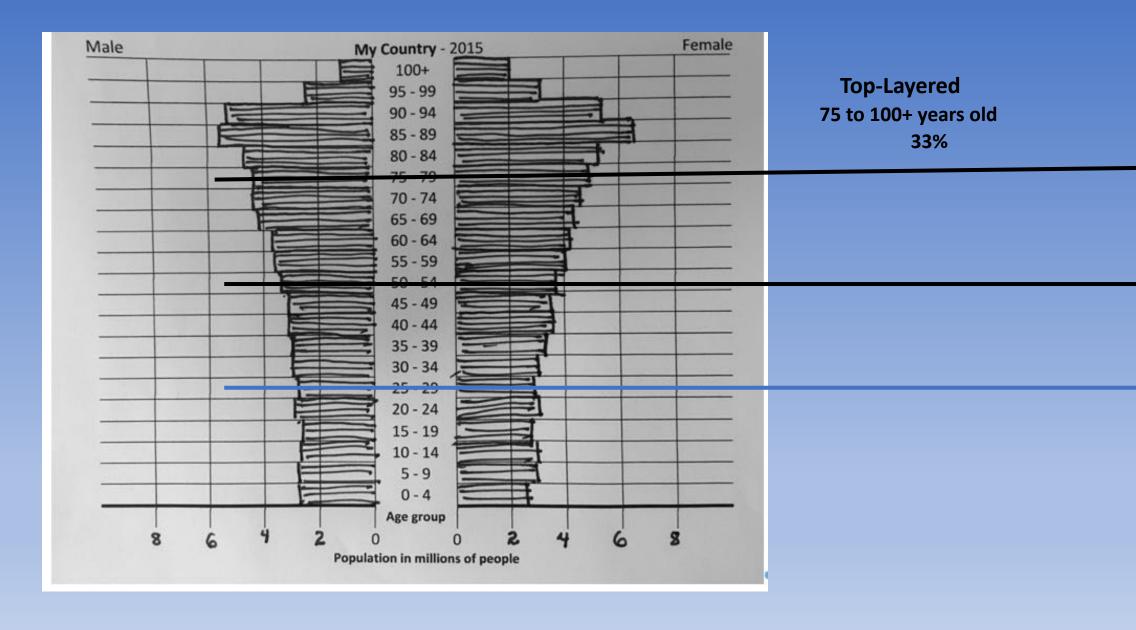

Top-Layer 75 – 100+ years old

Upper Middle-Layer 50 – 74 years old


Lower Middle-Layer 25 – 49 years old

Bottom-Layer 0 – 24 years old


A Lower Middle-Layered Country


Bottom-Layered Country

Upper Middle-Layered Country

My Country

Centers 2015

United States

Estimated median age: 35 – 39 years old (approximately 37 years)

Estimated mean age: 38 years old

Kenya (*)

Estimated median age: 15 - 19 years old (approximately 17 years old)

Estimated mean age: 23 years old

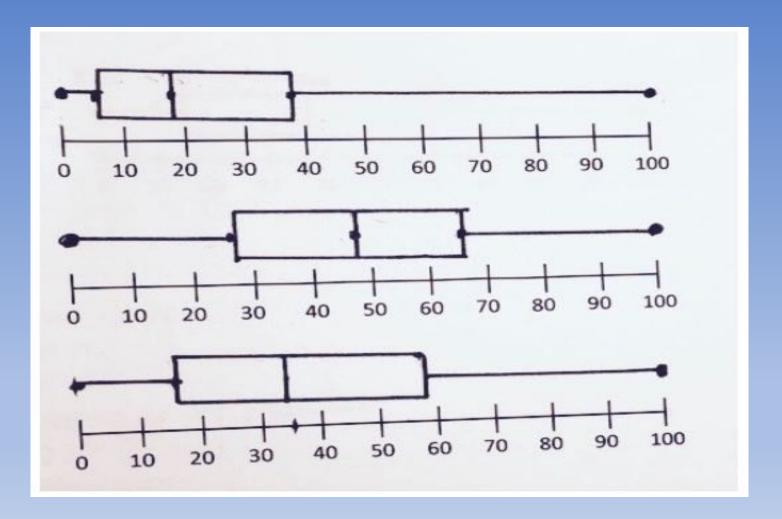
Japan

Estimated median age: 45 – 49 years old (approximately 46 years old)

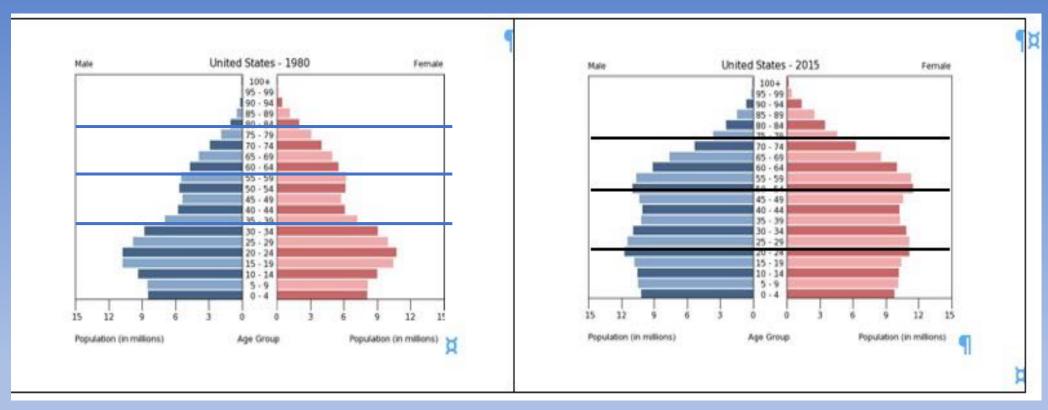
Estimated mean age: 46 years old

Spread 2015

Kenya

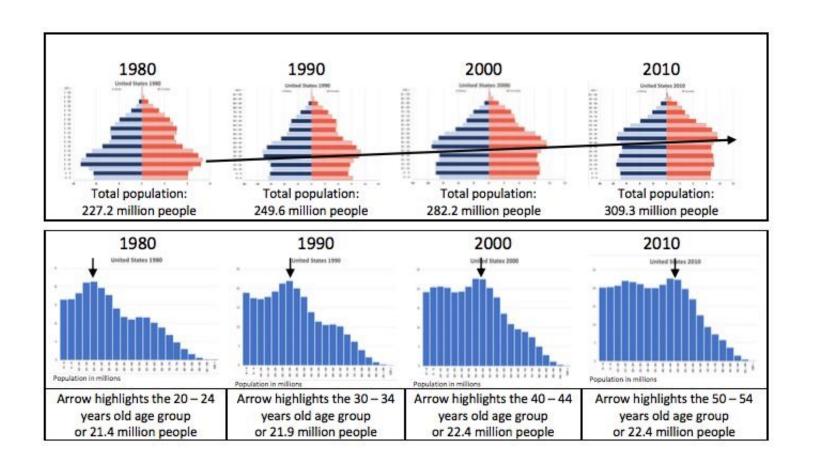

IQR approximately 27 years

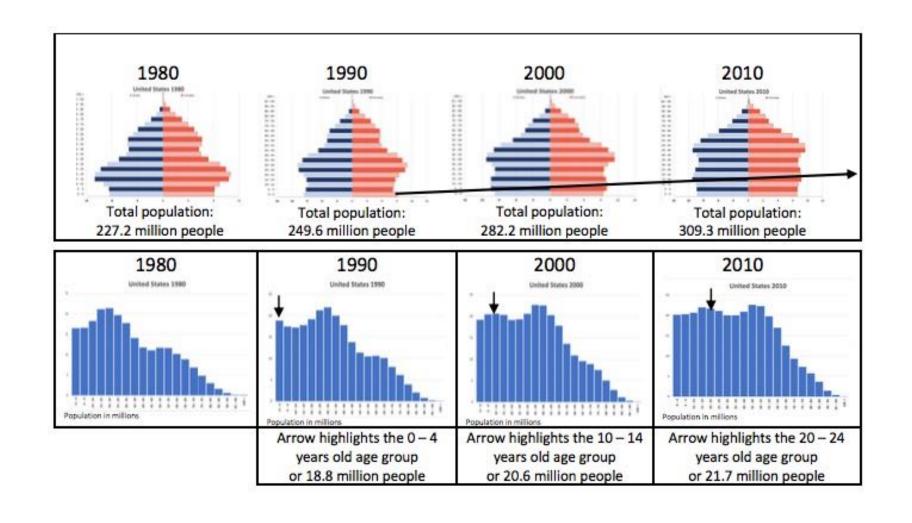
Japan


IQR approximately 39 years

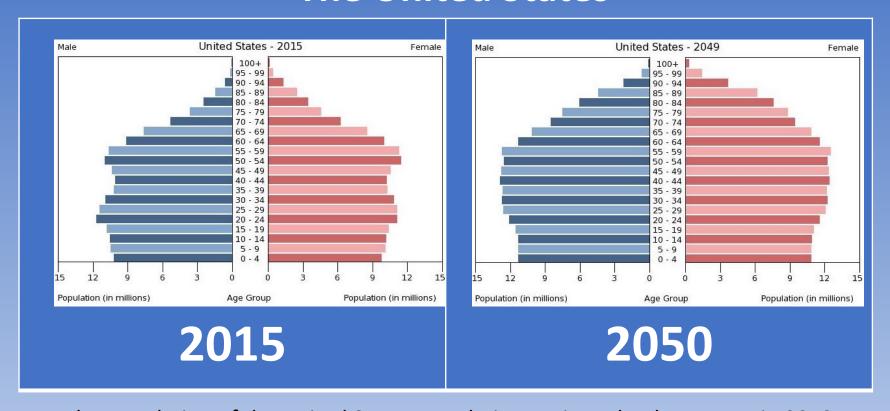
United States

IQR approximately 44 years

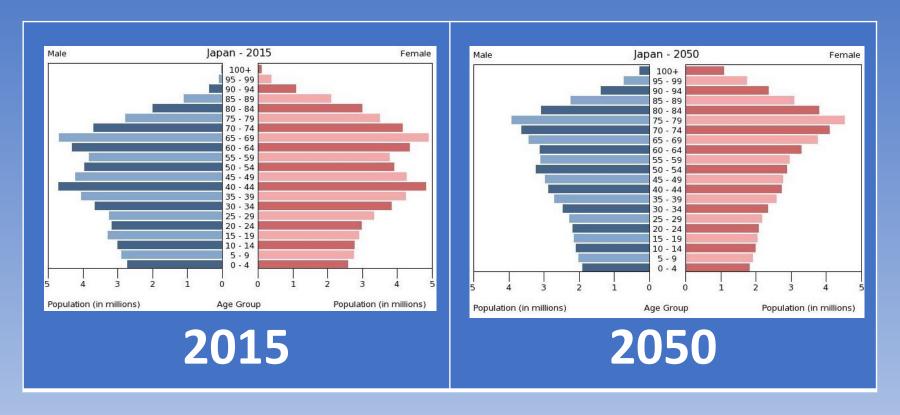

Unit 2: Looking Back


1980 Bottom-Layered

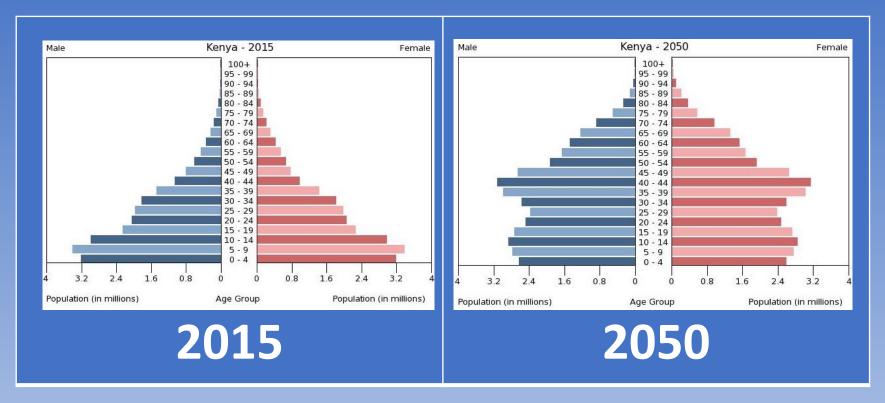
2015 Lower Middle-Layered Country


The Baby Boomers (Born 1943 – 1960)

The Millennial Generation (Born 1982 – 2002)



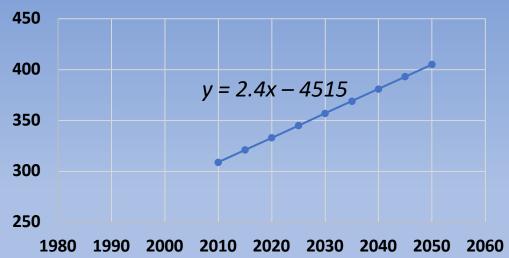
Unit 3: Looking Forward The United States


- Is the population of the United States population projected to be greater in 2050 than the population in 2015??
- What age groups are projected to change the most?
- What possible challenges will the US face in 2050?
- What factors do you think were considered in predicting the 2050 population?

Japan

- Is Japan's population projected to be greater in 2050 than 2015?
- What age groups are projected to change the most?
- What possible challenges will Japan face in 2050?
- What factors do you think were considered in predicting the 2050 population?

Kenya


- Is Kenya population in 2050 predicted to be greater than the population in 2015??
- What age groups are predicted to change the most?
- What possible challenges will Kenya face in 2050?
- What factors do you think were considered in predicting the 2050 population?

United States Linear Model

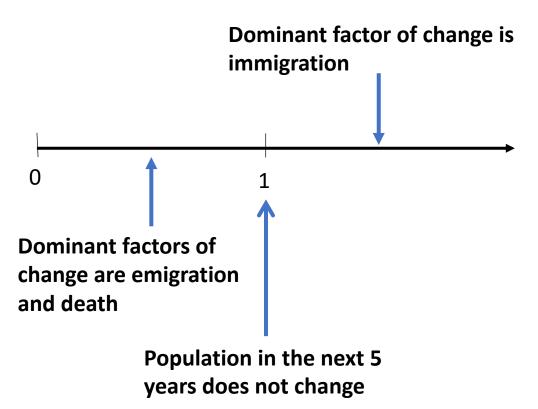
Year	2010	2015	2020	2025	2030	2035	2040	2045	2050
Population (in millions of people)	309	321 +12	333 +12	345 +12	357 +12	369 +12	381 +12	393 +12	A405

United States Population

Linear Projections for 2010 - 2050

United States Exponential Model

Year	2010	2015	2020	2025	2030	2035	2040	2045	2050
Population (in millions of people)	309	321	334	347	361	375	390	405	421
		x 321 or 1.039	x 321 309 or 1.039	x 321 / 309 or 1.039	x 321 / 309 or 1.039	x 321 / 309 or 1.039	x 321 / 309 or 1.039	x 321 / 309 or 1.039	


 $y = 309(1.0078)^{x-2010}$

Tools needed for building the Recursive Model

Connected Age Groups and the **Population Factors**

Age group 2010 (Counted at the start of 2010)	Connected Age Group in 2015 (Counted at the start of 2015)	Population Factor Based on the Ratio of connected age groups	Decimal equivalent of Population Factor (to the nearest thousandth)
0 – 4 20,189,589	5 – 9 20,481,130	$\frac{20,481,130}{20,189,589}$	1.014
5 – 9	10 – 14	20,605,579	1.013
20,331,807	20,605,579	20,331,807	
10 – 14	15 – 19	21,084,710	1.020
20,681,215	21,084,710	20,681,215	
50 – 54	55 – 59	21,767,855	0.974
22,353,471	21,767,855	22,353,471	
55 – 59	60 – 64	19,038,554	0.962
19,795,182	19,038,554	19,795,182	
60 – 64	65– 69	16,049,246	0.945
16,990,224	16,049,246	16,990,224	

Population Factors

Population Factors

The United States Kenya Japan

Age Groups	Population Factors
0 – 4 to 5 - 9	1.014
5 - 9 to 10 - 14	1.014
10 – 14 to 15 - 19	1.020
15 – 19 to 20 -24	1.032
20 – 24 to 25 - 29	1.032
25 – 29 to 30 - 34	1.022
30 – 34 to 35 - 39	1.012
35 – 39 to 40 - 44	1.004
40 – 44 to 45 - 49	0.995
45 – 49 to 50 - 54	0.985
50 – 54 to 55 - 59	0.974
55 – 59 to 60 - 64	0.962
60 – 64 to 65 - 69	0.945
65 – 69 to 70 - 74	0.917
70 – 74 to 75 - 79	0.869
75 – 79 to 80 -84	0.792
80 – 84 to 85 - 89	0.670
85 – 89 to 90 - 94	0.508
90 – 94 to 95 - 99	0.340
95 – 99 to 100+	0.205
100 +	

Age Groups	Population Factors
0 – 4 to 5 - 9	0.984
5 - 9 to 10 - 14	0.990
10 – 14 to 15 - 19	0.987
15 – 19 to 20 -24	0.988
20 – 24 to 25 - 29	0.982
25 – 29 to 30 - 34	0.973
30 – 34 to 35 - 39	0.963
35 – 39 to 40 - 44	0.957
40 – 44 to 45 - 49	0.951
45 – 49 to 50 - 54	0.947
50 – 54 to 55 - 59	0.942
55 – 59 to 60 - 64	0.926
60 – 64 to 65 - 69	0.898
65 – 69 to 70 - 74	0.837
70 – 74 to 75 - 79	0.742
75 – 79 to 80 -84	0.600
80 – 84 to 85 - 89	0.500
85 – 89 to 90 - 94	0.250
90 – 94 to 95 - 99	1.000
95 – 99 to 100+	0.205
100 +	

Age Groups	Population Factors
0 – 4 to 5 - 9	0.996
5 - 9 to 10 - 14	0.998
10 – 14 to 15 - 19	0.998
15 – 19 to 20 -24	1.000
20 – 24 to 25 - 29	0.998
25 – 29 to 30 - 34	0.996
30 – 34 to 35 - 39	0.996
35 – 39 to 40 - 44	0.995
40 – 44 to 45 - 49	0.993
45 – 49 to 50 - 54	0.989
50 – 54 to 55 - 59	0.984
55 – 59 to 60 - 64	0.975
60 – 64 to 65 - 69	0.965
65 – 69 to 70 - 74	0.946
70 – 74 to 75 - 79	0.909
75 – 79 to 80 -84	0.845
80 – 84 to 85 - 89	0.742
85 – 89 to 90 - 94	0.604
90 – 94 to 95 - 99	0.427
95 – 99 to 100+	0.205
100 +	

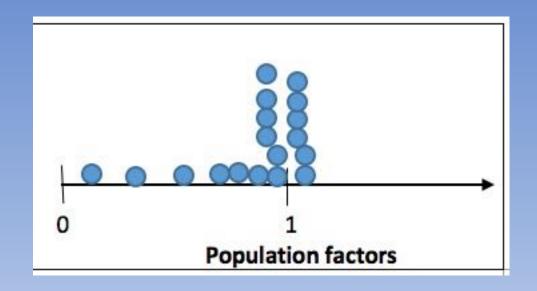
Population of age		Population Factor for connected age	=>
group 0 – 4 years old	X	groups	
2010			

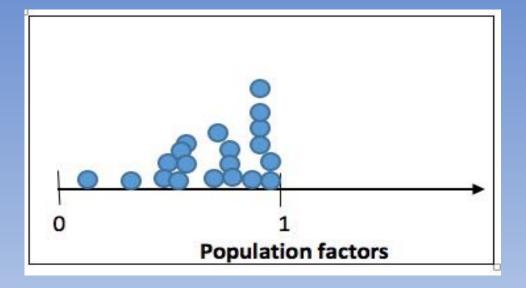
Population of age			=	Population
group 0 – 4 years old	X	Population of age group 5 – 9 for 2015		of age
2010		Population of age group $0-4$ for 2010		group 5 – 9
				for 2015

Population Factor for connected age groups 0 – 4 years old to 5 – 9 years old

Looking Forward: Applying the Population Factor The United States from 2015 to 2020

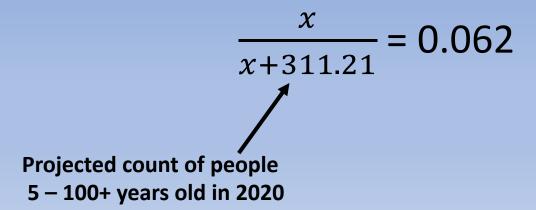
Age	Population	Population		Population
group	2015	Factor		2020
	(millions to			(millions to
	the nearest			the nearest
0 – 4	hundredth)	1 01 4		hundredth)
	19.91	1.014		22.22
5 - 9	20.48	1.014	*	20.20
10 - 14	20.61	1.020		20.76
15 - 19	21.09	1.032		21.02
20 - 24	22.69	1.032	*	21.77
25 - 29	22.40	1.022		
30 - 34	21.62	1.012		22.90
35 - 39	20.31	1.004		
40 - 44	20.16	0.995		
45 - 49	20.80	0.985		20.05
50 - 54	22.29	0.974	*	20.48
55 - 59	21.77	0.962		
60 - 64	19.04	0.945		20.93
65 - 69	16.05	0.917		
70 - 74	11.48	0.869		
75 - 79	8.12	0.792		
80 - 84	5.80	0.670		
85 - 89	3.86	0.508		3.89
90 - 94	1.85	0.340		
95 – 99	0.50	0.205	*	
100 +	0.08			


Looking Forward: The Domino Effect



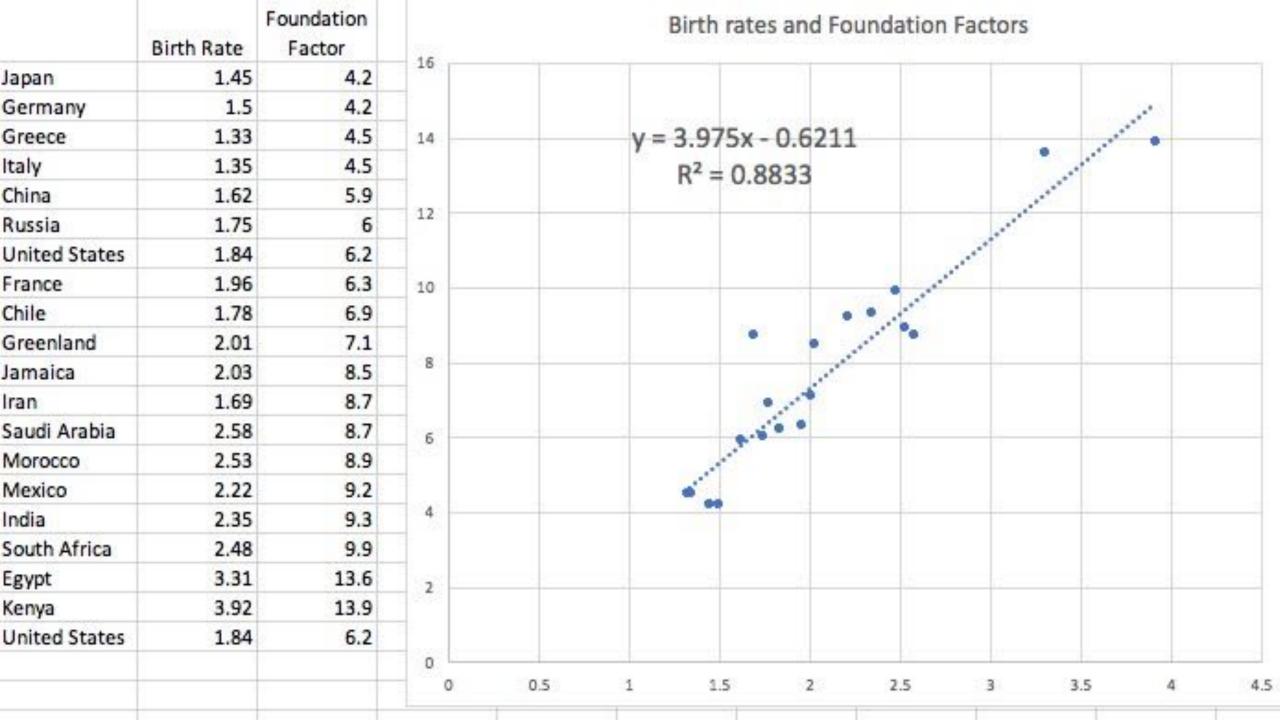
The United States from 2015 to 2020

										Actual		
							s:	Projection		Counts:		
2050		2045		2040	2035	2030	2025	2020	2015	2010	Population Factors	Age Groups
									19.91 <	20.19	1.014	0 – 4
								<mark>20.20</mark>	20.48	20.33	1.014	5 - 9
							▲ 20.47	20.76	20.61	20.68	1.020	10 - 14
						20.88	21.17	21.02	21.09	21.98	1.032	15 - 19
					21.55	21.86	21.70	21.77	22.69	<mark>21.70</mark>	1.032	20 - 24
				22.25 <	22.56	22.40	22.47	23.42	22.40	21.15	1.022	25 - 29
		<mark>22.74</mark> <	*	23.06	22.90	22.97	23.94	22.90	21.62	<mark>20.07</mark>	1.012	30 - 34
<mark>23.02</mark>	*	23.34		23.17	23.25	24.23	23.17	21.88	20.31	20.08	1.004	35 - 39
23.43		23.26		23.34	24.33	<mark>23.26</mark>	21.97	20.39	20.16	20.91	0.995	40 - 44
23.14		23.22		24.20	<mark>23.14</mark>	21.85	20.28	20.05	20.80	22.64	0.985	45 - 49
22.86		23.82		22.78	21.51	<mark>19.97</mark>	19.74	20.48	22.29	22.35	0.974	50 - 54
23.20		22.19		20.95	<mark>19.45</mark>	19.23	19.95	21.71	21.77	19.80	0.962	55 - 59
21.34		20.15		18.71	18.49	19.18	20.88	20.93	19.04	16.99	0.945	60 - 64
19.03		17.67		17.47	18.12	19.72	19.78	17.99	16.05	12.52	0.917	65 - 69
16.20		16.02		16.61	18.08	18.13	16.49	14.72	11.48	9.34	0.869	70 - 74
13.93		14.44		15.72	15.76	14.34	12.79	9.98	8.12	7.32	0.792	75 - 79
11.45												
8.35												
4.25 1.32												

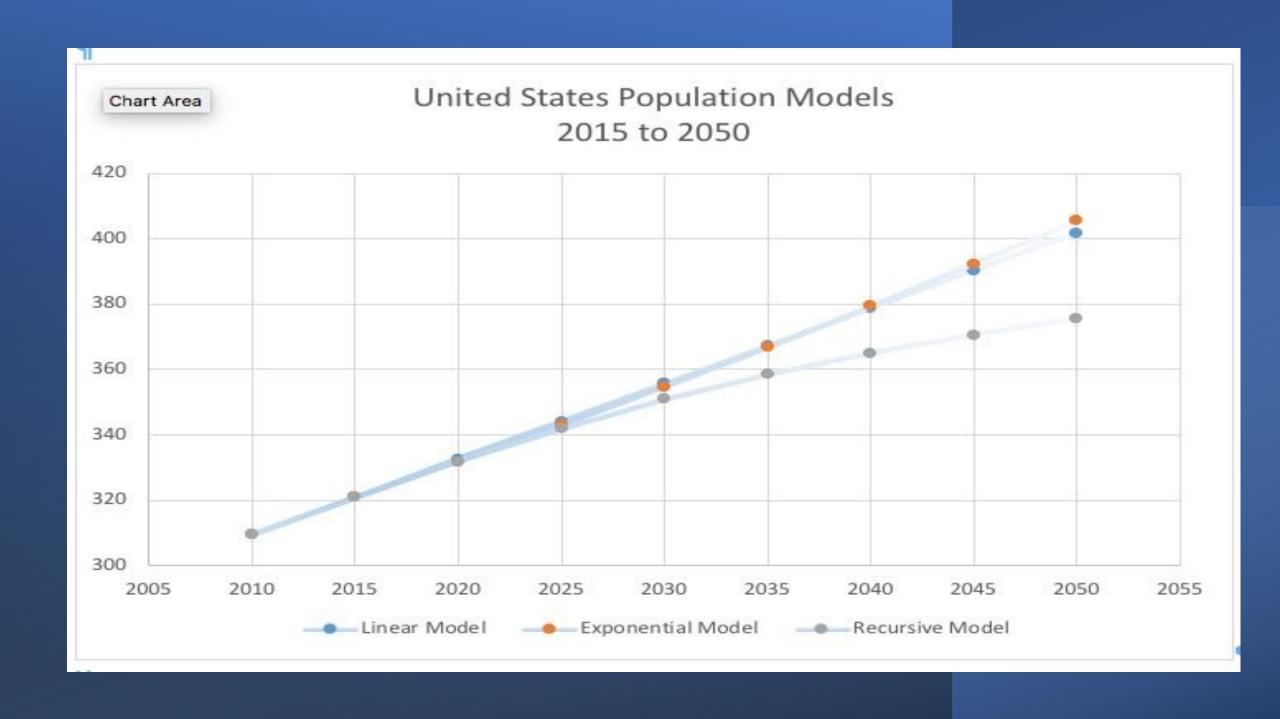

Which country is growing at a greater percent for each 5-year interval?

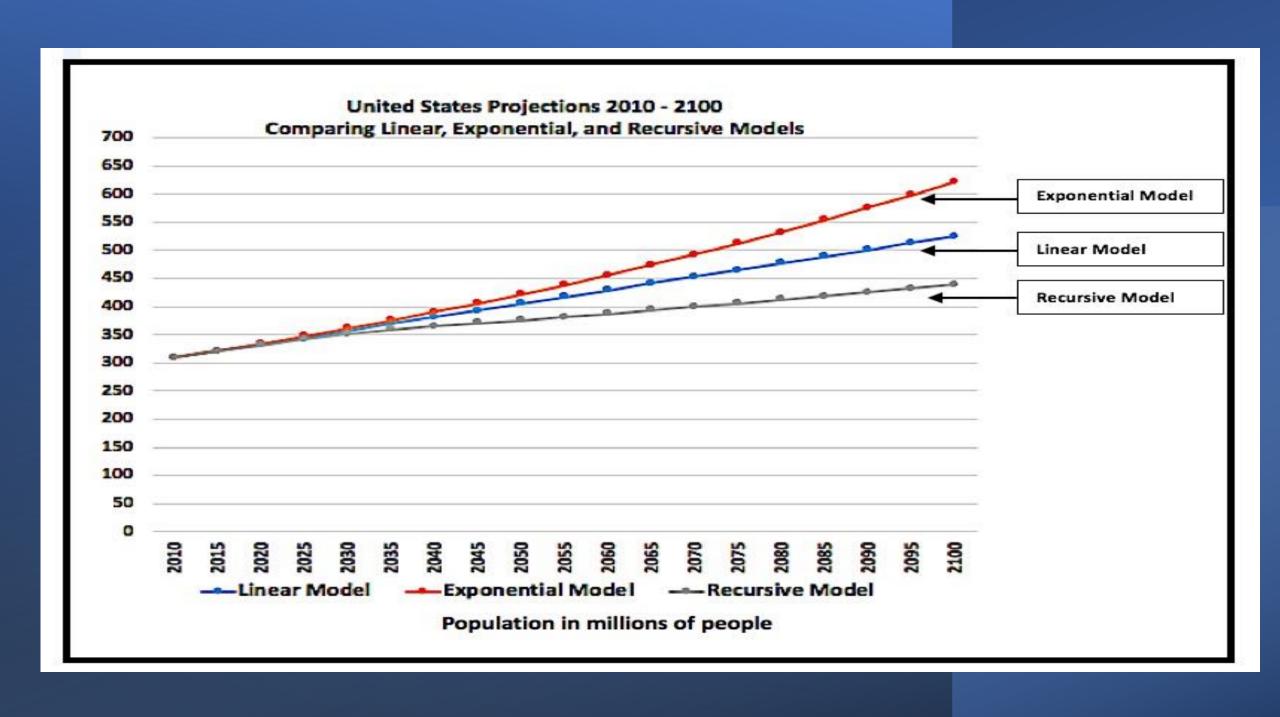
Deriving the count of the Foundation Factor for The United States

x =the count of the 0 - 4 years old



Tool needed for building the Recursive Model The Foundation Factor


 $\frac{Number\ of\ people\ 0-4\ at\ the\ start\ of\ 2015}{Total\ Number\ of\ people\ at\ the\ start\ of\ 2015} =$


The United States	Kenya	Japan
0.062	0.139	0.042

6.2% of the population of the United States in 2015 was 0-4 years old 13.9% of the population of Kenya in 2015 was 0-4 years old 4.2% of the population of Japan in 2015 was 0-4 years old

		Foundatio	n Factors:	W-	.00	-397	W.	307	377	27
		0.065	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062
	~	Actual (Counts:	Projections	:		v			
Age	Population									72
Groups	Factors	2010	2015	2020	2025	2030	2035	2040	2045	2050
0 – 4	1.014	20.19	19.91	20.57	21.20	21.75	22.23	22.63	22.97	23.29
5 - 9	1.014	20.33	20.48	20.20	20.87	21.50	22.07	22.55	22.95	23.30
10 - 14	1.020	20.68	20.61	20.76	20.47	21.15	21.80	22.37	22.86	23.27
15 - 19	1.032	21.98	21.09	21.02	21.17	20.88	21.57	22.23	22.81	23.31
20 - 24	1.032	21.70	22.69	21.77	21.70	21.86	21.55	22.27	22.95	23.55
25 - 29	1.022	21.15	22.40	23.42	22.47	22.40	22.56	22.25	22.99	23.69
30 - 34	1.012	20.07	21.62	22.90	23.94	22.97	22.90	23.06	22.74	23.50
35 - 39	1.004	20.08	20.31	21.88	23.17	24.23	23.25	23.17	23.34	23.02
40 - 44	0.995	20.91	20.16	20.39	21.97	23.26	24.33	23.34	23.26	23.43
45 - 49	0.985	22.64	20.80	20.05	20.28	21.85	23.14	24.20	23.22	23.14
50 - 54	0.974	22.35	22.29	20.48	19.74	19.97	21.51	22.78	23.82	22.86
55 - 59	0.962	19.80	21.77	21.71	19.95	19.23	19.45	20.95	22.19	23.20
60 - 64	0.945	16.99	19.04	20.93	20.88	19.18	18.49	18.71	20.15	21.34
65 - 69	0.917	12.52	16.05	17.99	19.78	19.72	18.12	17.47	17.67	19.03
70 - 74	0.869	9.34	11.48	14.72	16.49	18.13	18.08	16.61	16.02	16.20
75 - 79	0.792	7.32	8.12	9.98	12.79	14.34	15.76	15.72	14.44	13.93
80 - 84	0.670	5.76	5.80	6.43	7.91	10.14	11.36	12.49	12.46	11.45
85 - 89	0.508	3.64	3.86	3.89	4.31	5.30	6.79	7.61	8.37	8.35
90 - 94	0.340	1.47	1.85	1.96	1.98	2.19	2.69	3.45	3.87	4.25
95 – 99	0.205	0.38	0.50	0.63	0.67	0.67	0.75	0.92	1.17	1.32
100 +		0.05	0.08	0.10	0.13	0.14	0.14	0.15	0.19	0.24
	Totals	309.35	320.91	331.78	341.87	350.87	358.55	364.94	370.45	375.67

Unit 4: "What if?"

Revise the Recursive Models for The United States, Kenya, and Japan to investigate possible changes in the count of people in 2050 for the following "What if ...?" scenarios.

The United States

Scenario 2: It was 2017. There was a concern about the number of immigrants in the country who are not citizens. The government set new policies that limit the number of immigrants.

Scenario 5: It is 2018. It is 2018. A major medical breakthrough has been reached in which almost every person will live well into their 100's.

Scenario 7: It is 2018. Young people indicated in a survey that they are not likely to have children.

The United States

Unit 4: "What if?"

• **Scenario**: It is the start of the year 2019. A global pandemic starts. The results are deaths primarily in the age groups 65 of and older of 3 to 5 percent. What impact would this have on the projections of the 2050 estimates?

Unit 4: "What if?"

Kenya

Scenario 9: It is 2018. The Kenya government has been working with groups across the country to reduce the number of births.

Scenario 10: It is 2018. Improvement in health care resulted in a higher life expectancy for people who are 40 years old or older. In addition, please indicated they do not want large families.

Japan

Scenario 12: It is is 2018. There is a major concern of how to care for older people. The government made an effort to encourage people 25 years old or older in other countries to move to Japan to help for older people.

Access the Excel file:

USA Recursive Model.xisx

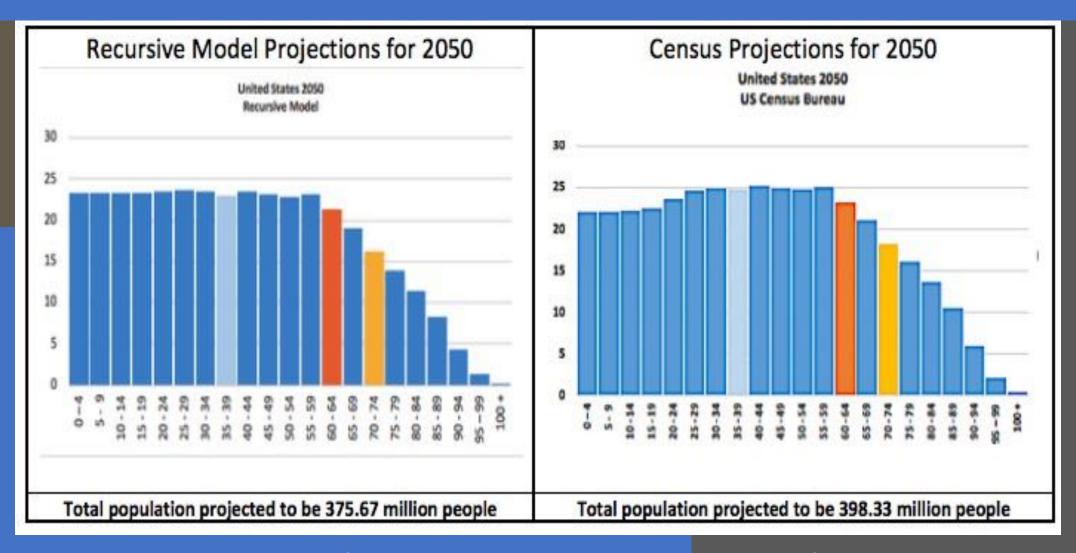
Rework the Population Factors to indicate that the changes in count from 2015 to 2020 are not dominated by immigration.

No changes to Recursive Model

Total population

2015: 321 million people

2050: 376 million people


Changes to address scenario:

Total population

2015: 321 million people

2050: 347 million people

What if the total population of the United States from 2010 to 2050 is reflected in the following graphs? Tell the story of the United States from 2010 to 2050.

Using your tools (population factors and foundation factors), change the outcomes of the recursive model to match the outcomes of the US Census model (as of April 2020) for 2050.

Handout 6: The United States 2010 – 2050 Lesson 15 and 16 Summary

		Foundation Factors:								
		0.065	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062
	ſ	Actual	Counts:	Projections	i:					
Age Groups	Population Factors	2010	2015	2020	2025	2030	2035	2040	2045	2050
0-4		20.19	19.91	+ _	+ \	+	+	+	+	+
5 - 9		20.33	20.48		>>+	~ +	+	+	+	+
10 - 14		20.68	20.61			74+	+	+	+	+
15 - 19		21.98	21.09				+	+	+	+
20 - 24		21.70	22.69					+	+	+
25 - 29		21.15	22.40						+	+
30 - 34		20.07	21.62	1						+
35 - 39	+	20.08	20.31 _	_						
40 - 44		20.91	20.16	7 + 1	3+	+	+	+	+	+
45 - 49		22.64	20.80		74+	+	+	+	+	+
50 - 54		22.35	22.29			+	+	+	+	+
55 - 59		19.80	21.77				+	+	+	+
60 - 64		16.99	19.04			20		+	+	+
65 - 69		12.52	16.05			.2			+	+
70 - 74		9.34	11.48							+
75 - 79		7.32	8.12							
80 - 84		5.76	5.80							
85 - 89		3.64	3.86							
90 - 94	ės:	1.47	1.85							
95 – 99		0.38	0.50							
100 +		0.05	0.08		12					
	Totals	309.35	320.91	+	+	+	+	+	+	+

Handout 6: The United States 2010 – 2050 Lesson 15 and 16 Summary

	- 1	Foundation Factors:								
	1	0.065	0.062	0.062	0.062	0.062	0.062		-	
		Actual	Counts:	Projections	: //				Š = 5	
Age Groups	Population Factors	2010	2015	2020	2025	2030	2035	2040	2045	2050
0-4		20.19	19.91	** -	** ~	**	**	44-	***	***
5 - 9		20.33	20.48	4	*	>> ##	**	**	***	***
10 - 14		20.68	20.61	9		3# 3#	**	**	**	***
15 - 19		21.98	21.09				**	**	**	**
20 - 24	1	21.70	22.69	15				**	**	++
25 - 29		21.15	22.40						++	**
30 - 34		20.07	21.62	4						**
35 - 39		20.08	20.31							
40 - 44	7	20.91	20.15	* -				+		+
45 - 49		22.64	20.80	12	- A.					
50 - 54		22.35	22.29							
55 - 59		19.80	22.77					+		
60 - 64		16.99	19.04							+
65 - 69		12.52	16.05							
70 - 74		9.34	11.48	_	->.		5			
75 - 79	1	7.32	8.12	× -	74					+
80 - 84		5.76	5.80		->.					
85 - 89		3.64	3.86				*			+
90 - 94		1.47	1.85	1						+
95 - 99		0.38	0.50							
100 +		0.05	0.08	15	1		7			
	Totals	309.35	320.91	**	**	**	**	***	***	***

How Good is the Recursive Model? (Evaluating the projections)

There are currently two methods used to address the question regarding whether or not the recursive model is a good model for deriving projections.

1. Looking back

Students replace the 2010 and 2015 counts in the recursive model with the 1980 and 1985 results (considered the best estimates of the actual counts). Students then compare the results project from this model with the Census counts for 2010 and 2015.

2. Comparing (and then adjusting) the recursive model projections to the US Census Bureau's projections.

Recursive Model: Projections for 2010 and 2015

United States		Foundation Factor	Foundation Factor	Foundation Factor	Foundation Factor
		0.072	0.074	0.074	0.074
Age Groups	Population Factors	1980	1985	2010	2015
0-4	1.133	16.45	17.84	22.79	23.93
5 - 9	1.028	16.60	18.64	24.59	25.83
10 - 14	1.027	18.24	17.07	24.08	25.29
15 - 19	1.007	21.11	18.73	23.53	24.73
20 - 24	1.013	21.39	21.26	22.53	23.70
25 - 29	1.017	19.69	21.67	21.78	22.83
30 - 34	0.992	17.74	20.03	20.43	22.15
35 - 39	1.001	14.08	17.60	18.05	20.27
40 - 44	0.990	11.73	14.09	19.30	18.06
45 - 49	0.982	11.05	11.61	21.53	19.10
50 - 54	0.961	11.69	10.85	21.27	21.14
55 - 59	0.924	11.81	11.23	18.57	20.43
60 - 64	0.921	10.14	10.91	15.19	17.15
65 - 69	0.854	8.81	9.34	11.19	13.99
70 - 74	0.806	6.84	7.52	7.95	9.55
75 - 79	0.700	4.83	5.51	6.10	6.41
80 - 84	0.598	2.96	3.38	4.60	4.27
85 - 89	0.443	1.58	1.77	2.89	2.75
90 - 94	0.321	0.56	0.70	1.19	1.28
95 – 99	0.205	0.12	0.18	0.36	0.38
100+		0.02	0.03	0.07	0.07
	Totals	227.44	239.96	(307.99)	323.31

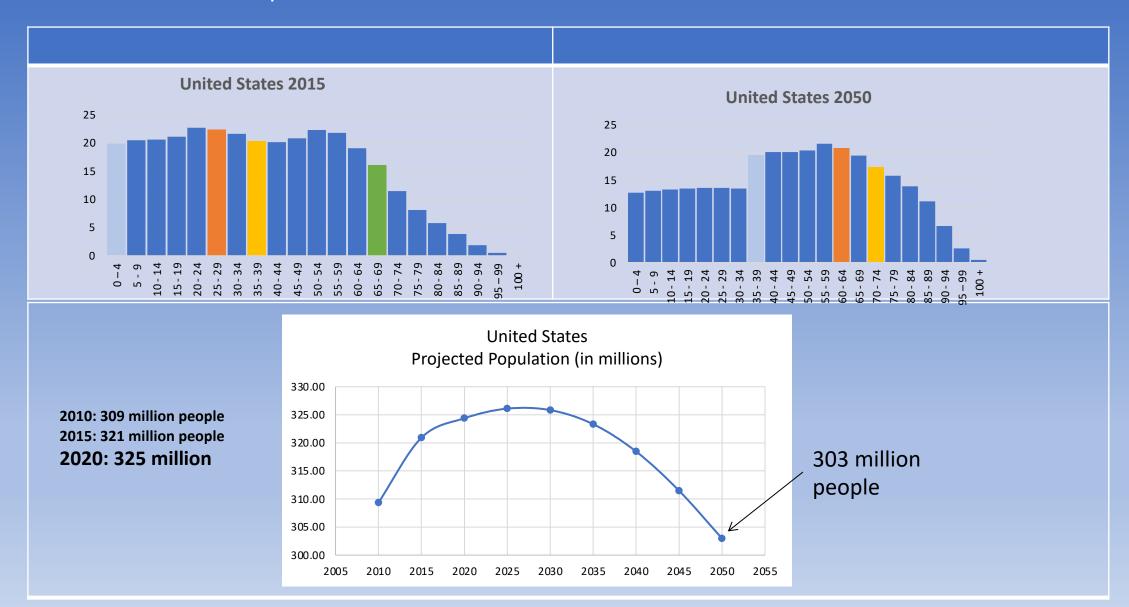
US Census counts:

US Census	
Foundation	Foundation
Factor	Factor
0.065	0.062
2010	2015
20.19	19.91
20.33	20.48
20.68	20.61
21.98	21.09
21.70	22.69
21.15	22.40
20.07	21.62
20.08	20.31
20.91	20.16
22.64	20.80
22.35	22.29
19.80	21.77
16.99	19.04
12.52	16.05
9.34	11.48
7.32	8.12
5.76	5.80
3.64	3.86
1.47	1.85
0.38	0.50
0.05	0.08
309.35	320.91

The United States | Henry's Projections compared to the Census Bureau:

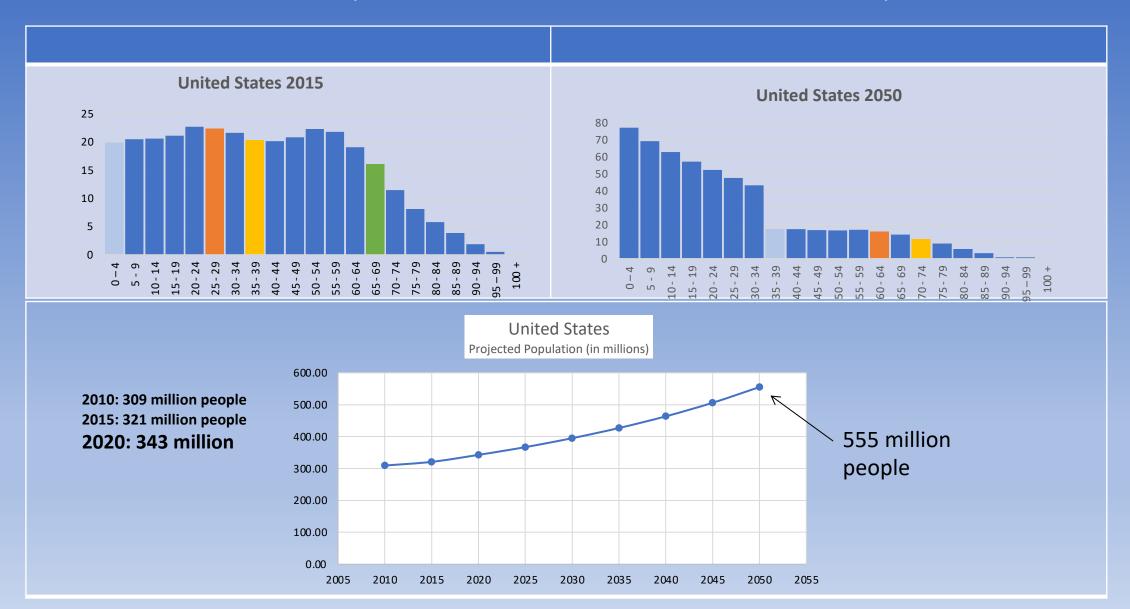
							277
H	Ħ	0.065⊭	0.062⊭	0.062⊭	0.059⊭	0.059⊭	0.058
H H		Actual Counts:		Projections:⊭			
Age- Groups	Henry's Population Factors¤	2010⊭	2015⊭	Henry's 2020⊭	Census- Low- 2020¤	Census- Middle- 2020¤	Census- High 2020⊭
0-4	1.014	20.19¤	19.91¤	20.57¤	19.43¤	19.46¤	19.48
59¤	1.014	20.33¤	20.48¤	20.20¤	20.37♯	20.43¤	20.47
1014¤	1.020¤	20.68⊭	20.61¤	20.76¤	21.74	21.83¤	21.88
15·19¤	1.032♯	21.98¤	21.09♯	21.02¤	21.53¤	21.62 <u>¤</u>	21.69
20·24¤	1.032¤	21.70¤	22.69¤	21.77♯	21.41	21.54	21.62
2529¤	1.022♯	21.15¤	22.40¤	23.42¤	22.86¤	22.96¤	23.06
3034¤	1.012¤	20.07⊭	21.62¤	22.90¤	22.78⊭	22.90¤	23.03
3539¤	1.004♯	20.08⊭	20.31♯	21.88¤	22.17¤	22.29¤	22.43
4044	0.995¤	20.91¤	20.16¤	20.39¤	20.53	20.64	20.79
4549¤	0.985¤	22.64⊭	20.80¤	20.05¤	20.47	20.51¤	20.66
5054¤	0.974¤	22.35¤	22.29♯	20.48♯	20.70	20.85¤	21.00
5559¤	0.962¤	19.80¤	21.77¤	21.71¤	21.42¤	22.19¤	22.36
6064¤	0.945¤	16.99¤	19.04¤	20.93¤	20.97⊭	21.07♯	21.24
6569¤	0.917¤	12.52⊭	16.05¤	17.99¤	17.79♯	17.96¤	18.14
7074¤	0.869¤	9.34¤	11.48¤	14.72¤	14.29	14.49¤	14.71
7579¤	0.792¤	7.32¤	8.12¤	9.98¤	9.47	9.64⊭	10.13
8084¤	0.670¤	5.76¤	5.80¤	6.43¤	6.04¤	6.14¤	6.45¤
85+¤	Ħ	5.54¤	5.84¤	6.58¤	5.98♯	6.06¤	6.38¤
и	Totals¤	309.35¤	320.46¤	331.78×	329.95×	332.58	335.52

The United States Comparison of Population and Foundation Factors:


Foundation Factors:

	0.062	0.059	0.059	0.058
Age Groups	Henry's Population Factors 2020	Census Population Factors Low 2020	Census Population Factors Middle 2020	Census Population Factors High 2020
0-4	1.014	1.023	1.026	1.028
5 - 9	1.014	1.062	1.066	1.068
10 - 14	1.020	1.045	1.049	1.052
15 - 19	1.032	1.015	1.021	1.025
20 - 24	1.032	1.007	1.012	1.016
25 - 29	1.022	1.017	1.022	1.028
30 - 34	1.012	1.025	1.031	1.037
35 - 39	1.004	1.011	1.016	1.024
40 - 44	0.995	1.015	1.017	1.025
45 - 49	0.985	0.995	1.002	1.010
50 - 54	0.974	0.961	0.996	1.003
55 - 59	0.962	0.963	0.968	0.976
60 - 64	0.945	0.934	0.943	0.953
65 - 69	0.917	0.890	0.903	0.917
70 - 74	0.869	0.825	0.840	0.882
75 - 79	0.792	0.744	0.756	0.794
80 - 84	1.134*	1.031*	1.045*	1.100*
85+				

Scenario 2: Replaced the Population Factors from 2010 to 2015 with the Population Factors of Japan for that same period of time. All of Japan's Population Factors are less than 1.


Scenario 3: Replaced the Population Factors and the Foundation Factor with the factors for Japan from 2010 to 2015. Japan's Foundation Factor for 2015 was 0.042.

Scenario 4: Replaced the Population Factors with the Population Factors for Kenya from 2010 – 2015. All of the population factors are less than 1.

Scenario 5: Replaced the Population Factors and the Foundation Factor with the Population Factors and Foundation Factor for Kenya in 2010 – 2015. The Foundation Factor for Kenya is 0.139.

The Modeling Continuum

Level 1	Level 2	Level 3	Level 4
Identifying or extracting data from data sets or projections.	Summarizing data and projections from tables or graphs.	Interpreting the tools (for example, population factors, foundation factors, proportions) that are used to derive projections addressed in the lessons.	Reworking and modifying the tools used to make projections by addressing "What if?" questions.
Answering questions directly from the presented data. Answering "What is?" questions.	Summarizing data or outcomes in your own words. Answering "What is?" questions using proportions, percent, or relative frequencies.	Answering questions or problems that require using the tools discussed in the lessons. Calculating new outcomes of a country's population based on changes in a country's immigration, births, and deaths.	Modifying the tools presented in the lessons that result in new population projections for real or fictitious countries. Answering questions that are a result of the modifications of a country's future population projections.

If time permits, what do you think were some of the points students addressed regarding why Kristin was an interesting person to highlight in the data stories?

American Statistical Association People Count! (and their data stories)

(Article and link to module posted on Statistics Teacher)

https://www.statisticsteacher.org/2020/03/25/peoplecount/

Microsoft Word and Excel files of above module:

<u>People Count</u>

Also check out the modeling development at the United States Census Bureau

International Data Base

Henry Kranendonk hkranendonk@earthlink.net

Download the Module

Front Material

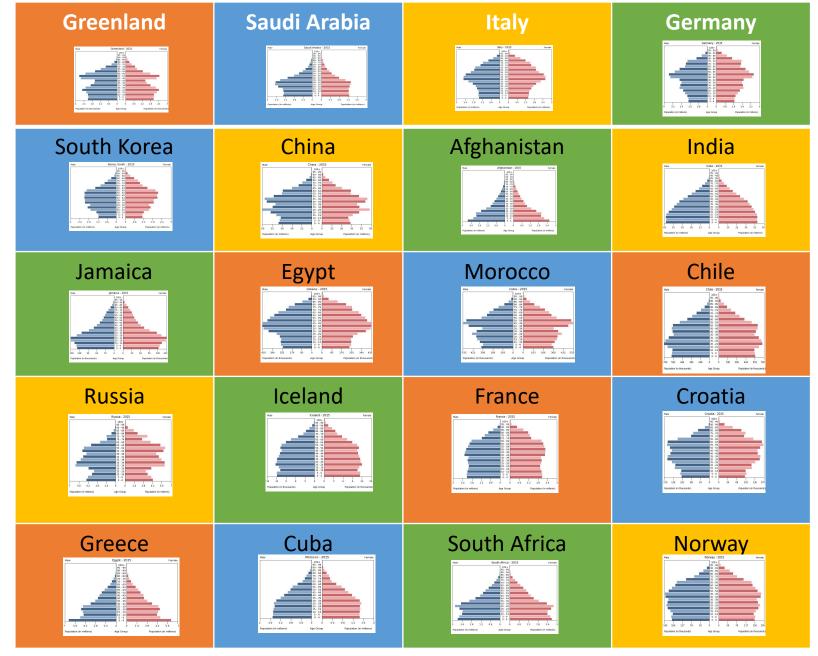
Overview of the Module

Introduction to the Module

Unit 1

Unit 2

Unit 3


Unit 4

Handouts

Excel Projection Files

Quilt of Countries

Henry's Quilt

