
> set.seed(236) 
> x.obs   <- c(2, 1, 4, 4, 3, 6) 
> m       <- length(x.obs) 
> k       <- sum(x.obs) 
> p       <- rep(1/m,m) 
> num.sim <- 100000 
> pmf.obs <- dmultinom(x.obs,prob=p) 
> X       <- rmultinom(num.sim,k,p) 
> pmf.sim <- apply(X,2,function(x,p){dmultinom(x,prob=p)},p=p) 
> sum(pmf.sim <= pmf.obs)/num.sim 
[1] 0.47492
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The Old Approach: Chi-Square GoF Test
• In the late 19th century, determining whether a die was fair by working with the

    multinomial probability mass function directly was computationally infeasible.

• Knowing that a multinomial random variable converges in distribution to a

    multivariate normal random variable, Pearson (1900) proposed the following 

    test statistic:

• A limitation when using the chi-square GoF test is the typically stated rule of

    thumb that ￼  must be ￼  in each bin (although variations on this rule exist). Ei ≥ 5
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The Better Approach: Multinomial Simulations
• The goal: to determine the proportion of datasets simulated under the null whose probability mass function values

    are equal to or smaller than the value we observe. This is easily done!

• The ￼ -value is 0.475 (95% CI 0.472-0.478), in contrast to 0.467 for the chi-square GoF test.p

• The simulation above runs for ￼  CPU second on a typical desktop/laptop computer.∼ 1

k: number of multinomial trials
p: multinomial probabilities under the null hypothesis

x.obs: observed data for k = 20 tosses

num.sim: the number of simulations
pmf.obs: the multinomial pmf value for the observed data
X: matrix of datasets simulated under the null

pmf.sim: pmf values for simulated data
the empirically estimated p-value

To achieve greater precision, simply increase num.sim.

At https://github.com/pefreeman/USCOTS-2025,

you will find the R Shiny app shown below along 

with R Markdown-based materials that you can 

freely adapt for your own classroom use. 
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• A standard approach to testing this hypothesis is to use the (approximate) chi-

    square goodness-of-fit (GoF) test, first proposed by Karl Pearson in 1900. But…

• in the low-￼  limit, this test yields increasingly biased ￼ -value estimates.k p

m: the number of faces (or bins)

• In the figure at left, ￼ . (￼  for the simulation above.)

• The vertical green dashed line: the expected number of counts for each face is 5.

• For numbers of expected counts￼ , use of the chi-square GoF test leads to

    biased estimates of the true ￼ -value.


• ￼ the Type I error rate is larger on average for the chi-square GoF test

Δp = pmult − pchi Δp = 0.008

≲ 20
p

Δp > 0 ⇒

Question: is the die fair? Is ￼ ? p1 = ⋯ = p6 = 1/6

To answer the question, we should use multinomial simulations!

The take-home message: in the age of computers, there is no reason 
to continue to use the chi-square GoF test, since exact multinomial tests 
are easy to code and yield unbiased p-value estimates (for any value of k)!

Experiment: we toss a six-sided die k times

• The data ￼  are sampled according to a multinomial distribution:X = {X1, …, X6}

￼X ∼ Multinomial(k, p)
where the sum of the data is ￼  and the sum of the probabilities is ￼ .Σi Xi = k Σi pi = 1

• ￼  represents the number of observed counts in bin ￼ (out of ￼  bins overall)

• ￼  is the probability of recording a count in bin ￼ under the null

• ￼  is the number of expected counts in bin ￼ under the null
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• Under the null hypothesis,
￼W d Y ∼ ChiSquare(m − 1) ,

i.e., the statistic W converges in distribution to a chi-square random variable.


