
A no bullshit guide to LLMs

Chief Scientist, Posit

April 2025

In R, with ellmer

Hadley Wickham

https://creativecommons.org/licenses/by-sa/4.0/

Two main goals of this talk:

Useful skills
Demystify jargon

library(ellmer)

chat <- chat_anthropic()

chat$chat("Who are you?")

#> Using model = "claude-sonnet-4-20250514".

#> I'm Claude, an AI assistant created by Anthropic. I'm here to help

#> with a wide variety of tasks like answering questions, helping with

#> analysis and research, creative writing, math and coding problems,

#> and having conversations. Is there something specific I can help

#> you with today?

And I’m going to do this (mostly) in R

My favourite!

chat <- chat_anthropic()

x <- 20598162

y <- 83106206

chat$chat(interpolate("What's {{x}} * {{y}}?"))

#> I'll calculate 20598162 * 83106206 for you.

#>

#> 20598162 × 83106206 = 1,711,398,278,221,972

#>

#> So the answer is 1,711,398,278,221,972.

format(x * y, big.mark = ",", scientific = FALSE)

#> [1] "1,711,835,094,393,372"

LLMs can’t multiply big numbers

chat <- chat_anthropic(model = "claude-3-7-sonnet-20250219")

chat$chat("How many n's in unconventional?")

#> There are 2 letter "n"s in the word "unconventional".

LLMs can’t even count

chat <- chat_anthropic(model = "claude-3-7-sonnet-20250219")

chat$chat("How many n's in unconventional?")

#> There are 3 letter "n"s in the word "unconventional":

#>

#> u**n**co**n**ve**n**tional

And they’re not even consistent

chat <- chat_anthropic(model = "claude-3-7-sonnet-20250219")

chat$chat("How many n's in unconventional?")

#> There is 1 letter "n" in the word "unconventional".

And they’re not even consistent

ns count
1 14
2 76
3 10

chat <- chat_anthropic()
#> Using model = "claude-sonnet-4-20250514".
chat$chat("How many n's in unconventional?")
#> To count the number of "n's" in "unconventional", I'll examine each letter:
#>
#> u-n-c-o-n-v-e-n-t-i-o-n-a-l
#>
#> Looking at each position:
#> - Position 2: n
#> - Position 5: n
#> - Position 8: n
#> - Position 12: n
#>
#> There are **4** n's in "unconventional".

And the goal posts are constantly moving

• The results are stochastic

• The models are constantly changing

• The difference between good results and bad results can be
razor thin (⚡jagged edge⚡)

• They always give plausible results

• They rarely admit doubt or lack of knowledge

So LLMs kind of suck:

Yes, and

chat <- chat_anthropic()

chat$chat("Write a limerick about the tidyverse")

#> Here's a limerick about the tidyverse:

#>

#> A coder who worked with great zeal,

#> Said "tidyverse makes data feel real!

#> With dplyr to wrangle,

#> And ggplot2's angle,

#> My pipe dreams are now a good deal!"

Computers can now write poems

And create art

library(ellmer)

chat <- chat_anthropic(

 "

 You're a quiz master who asks CHALLENGING questions about

 the tidyverse. Make a fun game show"

)

live_browser(chat)

And make fun games

chat <- chat_anthropic("Be terse")

chat$chat("

 What's the name of that base R function that finds names of

 functions that match some characters?

")

#> `apropos()`

#>

#> You can use it like `apropos("plot")` to find all

#> functions containing "plot" in their name.

Or more practically

“System” prompt

chat$chat("
 I'm the developer of httr2 and I want to improve the behaviour of
 req_throttle(), which prevents requests from overwhelming a server.
 What tools, techniques, algorithms or approaches should I be
 thinking about?
")
#> Here are key approaches for improving `req_throttle()`:
#>
#> ## Rate Limiting Algorithms
#> - **Token bucket**: Allows bursts while maintaining average rate
#> - **Leaky bucket**: Smooth, constant rate limiting
#> - **Fixed/sliding window**: Time-based quotas
#> - **Exponential backoff**: Automatic retry with increasing delays

Or more practically

Two main goals of this talk:

Useful skills
Demystify jargon

1.Structured data

2.Tool calling

3.Coding

Structured data

How would you extract name and age from this data?

prompts <- list(

 "I go by Alex. 42 years on this planet and counting.",

 "Pleased to meet you! I'm Jamal, age 27.",

 "They call me Li Wei. Nineteen years young.",

 "Fatima here. Just celebrated my 35th birthday last week.",

 "The name's Robert - 51 years old and proud of it.",

 "Kwame here - just hit the big 5-0 this year."

)

Your turn

chat <- chat_anthropic()

chat$chat("Extract the name and age from each sentence I give you")

chat$chat(prompts[[1]])

#> **Name:** Alex

#> **Age:** 42

chat$chat(prompts[[2]])

#> **Name:** Jamal

#> **Age:** 27

chat$chat(prompts[[3]])

#> **Name:** Li Wei

#> **Age:** 19

LLMs are generally good at this sort of task

chat$chat(prompts[[3]])

#> list(

#> name = "Li Wei",

#> age = 19

#>)

But wouldn’t it be nice to get an R data structure?

type_person <- type_object(

 name = type_string(),

 age = type_number()

)

chat$chat_structured(prompts[[1]], type = type_person)

#> List of 2

#> $ name: chr "Alex"

#> $ age : int 42

Well you can 😀

JSON schema

parallel_chat_structured(chat, prompts, type = type_person)

#> name age

#> 1 Alex 42

#> 2 Jamal 27

#> 3 Li Wei 19

#> 4 Fatima 35

#> 5 Robert 51

#> 6 Kwame 50

And you can do this to many prompts at once

And you’re not limited to just text...

paths <- dir("animals", full.names = TRUE)

images <- lapply(paths, \(x) list(content_image_file(x)))

type_animal_photo <- type_object(

 animal = type_string(),

 background_colour = type_string()

)

parallel_chat_structured(chat, images, type = type_animal_photo)

And it’s not a lot of code

animal background_colour
 sheep blue

bird pink
kitten gray
dog white

animal background_colour
 sheep blue

bird pink
 cat gray
dog white

animal background_colour
 sheep blue

bird pink
cat gray
dog white

animal background_colour
 sheep blue

bird pink
cat beige
dog white

animal background_colour
 sheep blue

bird pink
kitten gray
dog white

animal background_colour
 sheep blue

bird pink
cat gray
dog white

animal background_colour
 sheep blue

bird pink
cat beige
dog white

https://vitals.tidyverse.org/

Tool calling

chat <- chat_anthropic("Be terse")

chat$chat("What day is it today?")

#> I don't have access to real-time information, so I can't

#> tell you what day it is today. You can check your device's

#> calendar or clock for the current date.

LLMs don’t have access to live data about the world

chat <- chat_anthropic("Be terse")

chat$chat("Delete the csv files in my working directory")

#> ```bash

#> rm *.csv

#> ```

#>

#> This will delete all files with the `.csv` extension in your

#> current working directory.

Or the ability to make changes to the world

today <- tool(

 function() Sys.Date(),

 name = "today",

 description = "Get today's date",

 arguments = list()

)

chat$register_tool(today)

A tool is just a function with some extra metadata

chat$chat("What day is it today?")

#> ◯ [tool call] today()

#> ● #> "2025-07-16"

#> Today is Wednesday, July 16, 2025.

Now the model can know what day it is

2025-07-16

What day is it today?

Please call today()

Today is July 16, 2025. That's a Wednesday.

chat

#> <Chat Anthropic/claude-sonnet-4-20250514>

#> ── user [372] ──

#> What day is it today?

#> ── assistant [34] ──

#> [tool request (toolu_01BdjCpkVs41AzyNGaGdPqBU)]: today()

#> ── user [20] ───

#> [tool result (toolu_01BdjCpkVs41AzyNGaGdPqBU)]: "2025-07-16"

#> ── assistant [15] ──

#> Today is Wednesday, July 16, 2025.

You can see this if you print the chat object

chat <- chat_anthropic()

chat$register_tool(tool(

 function(x, y) format((x + 0) * (y + 0), scientific = FALSE),

 name = "multiply",

 description = "Multiply two numbers together",

 arguments = list(

 x = type_number(),

 y = type_number()

)

))

We can use this to give the LLM traditional computing powers

chat$chat(interpolate("What's {{x}} * {{y}}?"))
#> I'll multiply those two numbers for you.
#> ◯ [tool call] multiply(x = 20598162, y = 83106206)
#> ● #> 1711835094393372
#> The result of 20598162 * 83106206 is 1,711,835,094,393,372.

format(x * y, big.mark = ",", scientific = FALSE)
#> [1] "1,711,835,094,393,372"

So now we get the correct result

chat$register_tool(tool(
 function() dir(),
 name = "ls",
 description = "Lists the files in the current directory",
))
chat$register_tool(tool(
 function(path) unlink(path),
 name = "rm",
 description = "Delete one or more files",
 arguments = list(
 path = type_array(type_string())
)
))

Or we can make an agent

aka a character vector

chat$chat("Delete all the csv files in the current directory")
#> I'll first check what files are in the current directory,
#> then delete any CSV files.
#> ◯ [tool call] ls()
#> ● #> 1-coding-boilerplate.R
#> #> a.csv
#> #> b.csv
#> #> …
#> Now I'll delete the CSV files I found (a.csv and b.csv):
#> ◯ [tool call] rm(path = c("a.csv", "b.csv"))
#> ● #> true
#> Done. Deleted `a.csv` and `b.csv`.

Now my chat bot can delete files on my computer

Coding

• Amazing for quickly generating demos

• Shiny apps

• Example data

Clear wins

Example courtesy of George Stagg

• Amazing for quickly generating demos

• Shiny apps

• Example data

• Great at translations:

• command line curl -> httr2

• Latex -> Quarto

• R code -> STAN

• JSON -> unit tests

• SQL -> dplyr

• Explain and critiquing code

Clear wins

How do I make my code return every consecutive pair of
characters, not just the first? The code below returns ab,
instead of ab, cd, ef.

x <- "abcdef" 
start <- seq(1, nchar(x), by = 2) 
substr(x, start, start + 1)

Your turn

chat$register_tool(tool(

 function(code) {

 eval(parse(text = code), envir = globalenv())

 },

 name = "evaluate",

 description = "Run R code",

 arguments = list(

 code = type_string()

)

))

You can use tools to make a coding agent

chat$register_tool(tool(

 btw::btw_tool_docs_help_page,

 name = "read_docs",

 description = "Get help for a function",

 arguments = list(

 topic = type_string("function name"),

 package_name = type_string("Package name, if known", required =

FALSE),

)

))

And give it the ability to read the docs

The issue is that your `by = 2` is skipping every other position.
For consecutive pairs, you need `by = 1:

x <- "abcdef"

Stop at nchar(x) - 1 to avoid going past the string

start <- seq(1, nchar(x) - 1, by = 1)

substr(x, start, start + 1)

#> "ab"

First response

Let me check what's happening:

x <- "abcdef"

start <- seq(1, nchar(x) - 1, by = 1)

print(start)

#> [1] 1 2 3 4 5

result <- substr(x, start, start + 1)

print(result)

#> [1] "ab"

Second response

That's strange. Let me debug this further:

x <- "abcdef"
nchar(x)
start <- seq(1, nchar(x) - 1, by = 1)
print(start)
#> [1] 1 2 3 4 5
end <- start + 1
print(end)
#> [1] 2 3 4 5 6
result <- substr(x, start, end)
print(result)
#> [1] "ab"

Third response

I see the issue now! `substr()` is vectorized but returns a single
string when given vectors. Use `substring()` instead:

x <- "abcdef"

start <- seq(1, nchar(x) - 1, by = 1)

result <- substring(x, start, start + 1)

print(result)

[1] "ab" "bc" "cd" "de" "ef"

Final response

Conclusion

• Cost/equality of access: $5 on Claude gets you pretty far;
Gemini has a generous free tier. Local models not worth it IMO.

• Environmental concerns: worth considering, but small and
decreasing on individual level. More impactful ways to save
energy/water.

• Data privacy: legit as individual. Not a problem for most bigger
orgs as most data already lives in some cloud, and cloud
providers run LLMs.

• Replacing artists: Definite risk at societal level. Personally, trying
to supplement, not replace.

• Evil billionaires: Eat the rich?

LLM concerns

1.Structured data

2.Tool calling

3.Coding

