Standardizing R usage to improve student focus on statistical concepts

tabs(~ am + vs, data=mtcars2)

V-shaped straight

tabs(~ am + vs, data=mtcars2) |> prop.test()

(-squared = 0.34754, df = 1, p-value = 0.5555)

one_proportion_inference(vs ~ 1 + am, data=mtcars2)

wo_proportion_inference(vs ~ am, data=mtcars2)

Clear what level the proportion is for,

and which direction the difference is

Round to have two significant digits in SE

2-sample test for equality of proportions with continuity correction (two.sided), with 95% confidence intervals.

-0.2418423 0.5819233

prop 1 prop 2

2-sample test for equality of proportions with continuity correction

University of Minnesota Driven to Discover®

Aaron Rendahl, PhD University of Minnesota College of Veterinary Medicine

Motivation

- Students struggle to learn both R and statistics, in part due to the cognitive load to handle R idiosyncrasies.
- Standard R output often doesn't model best practices.

Since all of my students will need to understand statistics, but only some will need R...

Can I write a package to reduce the cognitive load of learning R and also demonstrate best practices, to improve student learning of statistical ideas?

Goals

Simpler input:

- Consistent formula notation
- Analyses by group and for multiple variables
- Simplify exploration of fitted models
- Hide most package usage
- More reasonable default behavior

Simpler output:

- Consistent output, in both console and Quarto
- Always show how variables were used
- Nice looking tables, with more useful labels and reasonable rounding
- Handle backtransformation more simply

Continue to use tidyverse verbs for data manipulation and ggplot2 for graphics, adding helper functions as needed.

Concerns

- Maybe it does too much? Is figuring out the output useful for understanding?
- Not as easy for students to build on R skills later
- Yet another package with different notation and usage?
- mosaic: my initial inspiration: it uses formula notation, but doesn't standardize output
- broom/gt: makes nice tables, but adds coding complexity
- emmeans: simplifies working with models, mostly nice syntax
- tidymodels: some nice elements, but not traditional enough for my audience.

Fall 2024 Assessment

- Notably fewer students struggled with R
- Office hours were more focused on conceptual questions
- Less class time spent on R idiosyncrasies
- Improved understanding of statistical concepts and statistical reasoning and thinking skills
- However, no formal evaluation or comparison with past years

Makes better default choices No hypothesis test Chooses between Wilson's and Clopper-Pearson Round to have two significant digits in SE

Bonus Features

Sample 6548

guess cor() Sample 6548

What is the strength, direction,

You guessed $_{--}$, it was -0.54.

Hit enter for another random sample

[Type a number for that sample.

What do you think the correlation is?

linearity, and shape?

Type X to quit.]

Correlation Guessing Game (L):

- Various random patterns to build intuition about correlation
- Strength, direction, linearity, and shape all randomly vary

Model Diagnostics Sampler (R):

- What do the patterns in the diagnostic plots really mean?
- Try a bunch of models with data of various patterns and build your

For discussion, specific samples can be recreated using the sample code.

One and two-sample t inference with log transformation How does the car weight depend on transmission type? A possible traditional analysis. test(log(wt) ~ am, data=mtcars2) |> broom::tidv() A tibble: 1×10 i 2 more variables: method <chr>, alternative <chr> Which groups are these estimates for? 0.072 12.0 0.691 1.007 Would you really report that p-value? g(wt) automatic t.test(log(wt) ~ am, data=mtcars2) |> broom::tidy() |> ne Sample t-test (two.sided), with 95% confidence intervals. Welch Two Sample t-test (two.sided), with 95% confidence intervals. mutate(across(c(starts_with("estimate"), starts_with("conf")), exp)) Cls for each group, and for the difference. i 2 more variables: method <chr>, alternative <chr> one_t_inference(log(wt) ~ am, data = mtcars2) How would you have your students code this two_t_inference(log(wt) ~ am, data = mtcars2)) back-transformation? ntcars2 |> nest(data=-am) |> $mutate(map dfr(data, \(x)$ t.test(log(wt)~1, data=x) |> broom::tidy())) |> Best practice is to report estimates for each group as well as the difference; how would you code this?

Pairwise t-tests: How does the mpg depend the number of cylinders? combine_tests(one_t_inference(mpg ~ cyl, data=mtcars2), pairwise_t_inference(mpg ~ cyl, data=mtcars2)) |> as_gt() |> tab_compact() elch Two Sample t-test (two.sided), with 95% confidence intervals, adjusted for 3 comparisons using the Bonferroni method Multiple tests: How does the car weight AND mpg depend on transmission type?

one_t_inference(wt + mpg ~ am, data = mtcars2), two_t_inference(wt + mpg ~ am, data = mtcars2)) onse variable n mean difference SE df conf.low conf.high null t.value p.value footn 1.7 12.0 20.7 28.1 -7.2 1.9 18.3 -11.3 -3.2 0.000 -3.77 0.0014

0.18 18.0 3.39 4.14 0.17 12.0 2.04 2.78 manual 1.36 0.25 29.2 0.85 1.86 0.000 5.49 < 0.0001 One Sample t-test (two.sided), with 95% confidence intervals. Velch Two Sample t-test (two.sided), with 95% confidence intervals

one_t_inference(log(wt) ~ am, data = mtcars2, backtransform = FALSE), two_t_inference(log(wt) ~ am, data = mtcars2, backtransform = FALSE)) sponse variable n mean difference SE df conf.low conf.high null t.value p.value footn 0.459 0.085 20.8 0.282 0.636 0.000 5.40 < 0.0001 Use the same formula notation to get estimates and

response	variable	n	mean	ratio	SE	df	conf.low	conf.high	null	t.value	p.value	footno
wt	am = automatic	19	3.70		0.16	18.0	3.37	4.06				
wt	am = manual	13	2.34		0.17	12.0	2.00	2.74				
wt	am: automatic / manual			1.58	0.13	20.8	1.33	1.89	1.00	5.40	< 0.0001	3
One Sample t-test (two.sided), with 95% confidence intervals. Results are backtransformed from the log scale (that is, the geometric mean is reported), and the standard error is												

Results are backtransformed from the log scale (that is, the ratio is reported), and the standard error is estimated

Back-transformation is built in, to keep the focus on what it means, not how to code it.

or ANOVA: model means and predictions How does the mpg depend the number of cylinders?

mpg_model <- lm(mpg ~ cyl, data=mtcars2)</pre> nodel_anova(mpg_model)

2 825 412 39.7 < 0.0001 Residuals 29 301 10.4 combine_tests(

model means(mpg model, ~ cyl), pairwise_model_means(mpg_model, ~ cyl))

0.86 29 13.34 16.86 1.2 29 17.3 22.2 0.97 29 24.68 28.65 6.9 1.6 29 3.1 10.8 4.44 0.0003

11.6 1.3 29 8.4 14.8 8.90 < 0.0001 4.6 1.5 29 1.0 8.3 3.11 0.011

conf.low conf.high t.ratio p.value cld.group footnote

value adjustment: tukey method for comparing a family of 3 estimates Conf-level adjustment: tukey method for comparing a family of 3 estimates

prediction predict.low predict.high 33.5 ediction level used: 0.95

Included features:

One and Two Group Inference

- Standardized functions for one-sample, two-sample, paired, and pairwise inference for...
- Proportions (automatically choosing a reasonable test)
- Means, with possible log-transformed response
- Non-parametric tests (Wilcoxon and Kruskal-Wallis)
- Correlation tests (Pearson, Spearman, Kendall)
- Allow these to be done for subgroups and for multiple responses and/or predictors without creating subsetted data frames or looping

Linear and Logistic Models

- Output for anova tables, summary statistics, coefficients
- Estimated model means, slopes, and pairwise differences
- Model means and predictions use similar syntax, and allow for backtransformation from both log responses and logistic models
- Diagnostic plots

Summary Statistics

• Incorporate selected gtsummary functionality

Power Calculations

 Power calculations for two-sample t-tests, for traditional power, equivalence tests, and desired margin of error

Output

- Combine results from multiple tests
- · Control formatting of output, including rounding using either decimals or significant digits
- Can convert output tables to tibbles for plotting or saving
- Includes blank Quarto template with all necessary setup code, and also R version and citation information

Graphics

- Incorporate beeswarm graphics
- Simplify plots of data with a binary response
- Model diagnostic plots using ggplot graphics

Documentation

- Vignettes with examples for all major functions
- Explanation of how to get started with R and Quarto

- A correlation guessing game
- Demonstrate regression diagnostics on randomly created data sets

https://aaronrendahl.github.io/umncvmstats/